Lock接口
Reentrant实现了Lock接口,Lock接口主要定义了如下几个方法:
//加锁
void lock();
//获取锁
boolearn tryLock();
//获取锁(设置超时等待时间)
boolearn tryLock(long time, TimeUnit unit) throw InterruptedException;
//释放锁
void unlock();
ReentrantLock结构
默认构造创建的是一个非公平锁,可以通过参数控制创建的是公平的还是非公平的;
//默认的构造为非公平重入锁
public ReentrantLock() {
sync = new NonfairSync();
}
//根据fair参数判断创建的是公平锁还是非公平
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
公平锁:按照线程先来后到顺序获取锁,后到的线程只能等前面的线程都获取锁完毕才执行获取锁的操作,执行有序
非公平锁:不按照线程先来后到的时间顺序进行竞争锁,后到的线程也能够获取到锁
ReentrantLock内部类:NonfairSync,FairSync
Reentrant都是通过NonfairSync和FairSync来实现锁的功能,它俩的父类Sync则继承了AbstractQueuedSynchronizer,AQS是JUC框架核心。
加锁lock()
//公平锁
//static final class FairSync extends Sync
final void lock() {
acquire(1);
}
//非公平锁
// static final class NonfairSync extends Sync {
final void lock() {
//CAS更新同步状态值state,锁占有线程设置为当前线程
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
先看一下acquire(1)方法,此方法定义在Sync的父类AbstractQueuedSynchronizer中
//AbstractQueuedSynchronizer.java
//获取锁,此部分逻辑定义在父类中,NonfairSync和FairSync通用,只是tryAcquire(arg) 有不同的实现
public final void acquire(int arg) {
//获取锁失败 && acquireQueued方法会将线程排队到队列并且返回线程是否需要中断
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
/**
* 中断当前线程
**/
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
公平锁的tryAcquire实现
//static final class FairSync extends Sync
//尝试获取锁的逻辑(公平锁),获取成功返回true,失败返回false
protected final boolean tryAcquire(int acquires) {
//获取当前线程
final Thread current = Thread.currentThread();
//获取同步状态的当前值
int c = getState();
if (c == 0) {
//判断前面是否有排队的线程,没有的话CAS设置线程的state值为1
//与非公平锁的获取锁实现唯一区别的地方
//非公平锁不需要hasQueuedPredecessors() 判断前面是否有排队的线程
if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) {
//设置占用线程为当前线程
setExclusiveOwnerThread(current);
return true;
}
} else if (current == getExclusiveOwnerThread()) {//重入,当前线程就是独占线程
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
非公平锁的tryAcquire实现
//Sync object for non-fair locks
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
//nonfairTryAcquire实现在父类Sync中
final boolean nonfairTryAcquire(int acquires) {
//获取当前线程
final Thread current = Thread.currentThread();
//获取同步状态值
int c = getState();
if (c == 0) {
//与公平锁的获取锁实现唯一区别的地方
//公平锁要hasQueuedPredecessors() 判断前面是否有排队的线程
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
} else if (current == getExclusiveOwnerThread()) {//锁占有线程就是当前线程,重入
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
//更新同步状态值
setState(nextc);
return true;
}
return false;
}
tryAcquire(arg)返回false的话,执行acquireQueued进行添加到队列,此方法定义在AbstractQueuedSynchronizer中,参数需要addWaiter(Node.EXCLUSIVE)返回的Node。
//AbstractQueuedSynchronizer.java
/**
* 为当前线程和给定模式创建和排队节点
**/
private Node addWaiter(Node mode) {
//创建当前线程节点
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
/**
* 尝试排队
**/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
//前面无排队线程 && 获取锁成功
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//获取锁失败后暂停线程
if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
解锁lock()
解锁方法定义在AbstractQueuedSynchronizer中,实现在ReentrantLock的内部类Sync中
//ReentrantLock.java
public void unlock() {
sync.release(1);
}
//AbstractQueuedSynchronizer.java
public final boolean release(int arg) {
//尝试获取锁
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
//唤醒等待的线程获取锁
unparkSuccessor(h);
return true;
}
return false;
}
//ReentrantLock.Sync
protected final boolean tryRelease(int releases) {
//计算状态值
int c = getState() - releases;
//当前线程没有占有锁
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
//释放锁成功
free = true;
setExclusiveOwnerThread(null);
}
//更新状态值
setState(c);
return free;
}