TensorFlow-5: 用 tf.contrib.learn 来构建输入函数

学习资料:
https://www.tensorflow.org/get_started/input_fn

对应的中文翻译:
http://studyai.site/2017/03/06/%E3%80%90Tensorflow%20r1.0%20%E6%96%87%E6%A1%A3%E7%BF%BB%E8%AF%91%E3%80%91%E9%80%9A%E8%BF%87tf.contrib.learn%E6%9D%A5%E6%9E%84%E5%BB%BA%E8%BE%93%E5%85%A5%E5%87%BD%E6%95%B0/


今天学习用 tf.contrib.learn 来建立 input funciton, 并用 DNN 对 Boston Housing 数据集进行回归预测。

问题:

  • 给一组波士顿房屋价格数据,要用神经网络回归模型来预测房屋价格的中位数
  • 数据集可以从官网教程下载:
    https://www.tensorflow.org/get_started/input_fn
  • 它包括以下特征:


  • 我们需要预测的是MEDV这个标签,以每一千美元为单位

一共有 5 步:

  • 导入 CSV 格式的数据集
  • 建立神经网络回归模型
  • 用训练数据集训练模型
  • 评价模型的准确率
  • 对新样本数据进行分类

代码:
地址:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston.py

"""DNNRegressor with custom input_fn for Housing dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import pandas as pd
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
           "dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
            "age", "dis", "tax", "ptratio"]
LABEL = "medv"


def input_fn(data_set):
  feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
  labels = tf.constant(data_set[LABEL].values)
  return feature_cols, labels


def main(unused_argv):
  # Load datasets
  training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
                             skiprows=1, names=COLUMNS)
  test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
                         skiprows=1, names=COLUMNS)

  # Set of 6 examples for which to predict median house values
  prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
                               skiprows=1, names=COLUMNS)

  # Feature cols
  feature_cols = [tf.contrib.layers.real_valued_column(k)
                  for k in FEATURES]

  # Build 2 layer fully connected DNN with 10, 10 units respectively.
  regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
                                            hidden_units=[10, 10],
                                            model_dir="/tmp/boston_model")

  # Fit
  regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)

  # Score accuracy
  ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
  loss_score = ev["loss"]
  print("Loss: {0:f}".format(loss_score))

  # Print out predictions
  y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
  # .predict() returns an iterator; convert to a list and print predictions
  predictions = list(itertools.islice(y, 6))
  print("Predictions: {}".format(str(predictions)))

if __name__ == "__main__":
  tf.app.run()

今天主要的知识点就是输入函数

在上面的代码中我们可以看到,输入数据时用的是 pandas,可以直接读取 CSV 文件
为了识别数据集中哪些是列,哪些是特征,哪些是预测标签,需要把这三者定义出来

在定义神经网络回归模型时,我们建立一个具有两层隐藏层的神经网络,每一层具有 10 个神经元节点,
接下来就是建立输入函数,它的作用就是把输入数据传递给回归模型,它可以接受 pandas 的 Dataframe 结构,并将特征和标签列作为 Tensors 返回

在训练时,只需要把训练数据集传递给输入函数,用 fit 迭代5000步
评价模型时,也是将测试数据集传递给输入函数,再用 evaluate
预测时,同样将预测数据集传递给输入函数


关于 输入函数:

昨天学到读取 CSV 文件的方法适用于不需要对原来的数据有什么操作的时候
但是当需要对数据进行特征工程时,我们就需要有一个输入函数来把数据的预处理给封装起来,再传递给模型

输入函数的基本框架:

def my_input_fn():

    # Preprocess your data here...

    # ...then return 1) a mapping of feature columns to Tensors with
    # the corresponding feature data, and 2) a Tensor containing labels
    return feature_cols, labels

输入函数必须返回下面两种值:

feature_cols:是一个字典,key 就是特征列的名字,value 就是 tensor,包含了相应的数据

labels:返回包含标签数据的 tensor,即所想要预测的目标

如果特征/标签数据存在pandas数据帧中或numpy数组中,那么需要将其转换为Tensor,然后从 input_fn 中返回。

对于稀疏数据
大多数值为0的数据,应该填充一个 SparseTensor,

下面例子,就是定义了一个具有3行和5列的二维 SparseTensor。在 [0,1] 上的元素的值为 6,[2,4] 上的元素值为 0.5,其他值为 0:

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
                                values=[6, 0.5],
                                dense_shape=[3, 5])
[[0, 6, 0, 0, 0]
 [0, 0, 0, 0, 0]
 [0, 0, 0, 0, 0.5]]

推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容