数据库与数据仓库的区别

数据库 Database (Oracle, Mysql, PostgreSQL)主要用于事务处理,数据仓库 Datawarehouse (Amazon Redshift, Hive)主要用于数据分析

用途上的不同决定了这两种架构的特点不同。

数据库(Database)的特点是:

  • 相对复杂的表格结构,存储结构相对紧致,少冗余数据。
  • 读和写都有优化。
  • 相对简单的read/write query,单次作用于相对的少量数据。

数据仓库(Datawarehouse)的特点是:

  • 相对简单的(Denormalized)表格结构,存储结构相对松散,多冗余数据。
  • 一般只是读优化。
  • 相对复杂的read query,单次作用于相对大量的数据(历史数据)。

用图书表格系统举例子。如果是数据库储存的话,表单的设计如下:

<noscript>
image

</noscript>

image

<figcaption>数据库(Database)表结构</figcaption>

这里有六张表,分别记录了作者,图书,图书种类,发行商以及他们之间的关系。

如果我们把以上数据用数据仓库来存储,表单设计需要对原始表单进行Denormalization。

Denormalization is a strategy used on a previously-normalized database to increase performance. In computing, denormalization is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data. - Denormalization - Wikipedia

现在我们把这个数据库的五张表以Books.Title作为主键,用如下图的脚本Denormalize之后存到数据库仓库中.

-- Denormalization Script -- 
select 
b.id,
b.title,
b.copyright,
b.isbn,
g.genre,
a.firstname as AuthorFirstName,
a.lastname as AuthorLastName,
a.dateofbirth,
a.gender,
p.name as PublisherName
from BOOKS b
left join GENRE g on b.genre = g.id
left join AUTHOR_BOOK_MAP abm on b.id = abm.bookid
left join AUTHORS a on a.id = abm.authorid
left join PUBLISHER_BOOK_MAP pbm on b.id = pbm.bookid
left join PUBLISHER p on p.id = pbm.publisherid;

那么数据仓库中就只剩下一张表,如下图所示。

<noscript>
image

</noscript>

image

<figcaption>数据仓库(Datawarehouse)表结构</figcaption>


存储空间对比

很明显,因为在denormalization的过程中,如果数据库主表和次表不是一对一的关系,那么最终数据仓库主表或者次表一定会出现重复的数据。所以从存储空间角度讲,相比于数据库紧密的存储结构,数据仓库则存在大量冗余重复的数据。

<noscript>
image

</noscript>

image

<figcaption>数据库(Database)表单存储紧凑</figcaption>

<noscript>
image

</noscript>

image

<figcaption>数据仓库(Datawarehouse)表单里有大量冗余</figcaption>

读写优化对比

  • 基本读(Read)操作对比

下图所示的两种查询,一个是找一本书(PrimaryKey)的信息,另一个是找一位作者(Non-Key)所有的作品信息。由于数据库需要利用表之间的关联才能找到所有需要的数据,在效率上会相对低下。相比之下数据仓库把这些关联关系转化成重复数据记录到同一张表上了,查询效率相对就会较高。数据仓库相当于牺牲了空间换取了查询效率。

<noscript>
image

</noscript>

image

在数据库里面写这段query的时候,我们需要了解表单的结构与他们之间的关系——这对于做数据报告或者数据分析非常不友好,尤其是在表单结构很复杂的时候(比如表单使用了逻辑树的储存结构)。这时候数据仓库简单明了的Denormalized表单结构就对于生成数据报告就非常有优势了。

除此之外,由于数据报告和数据分析常常涉及到大规模的查询,这些查询很可能会占用很高的CPU资源,从而可能影响到数据库的常规读写操作——因为数据库常常是Single-Instance的(接下来会提到);这一点上数据仓库的Multi-instances的结构就不会有太多这个问题。

  • 大数据读(Read)操作对比

当数据量非常大的时候,特定条件下的数据仓库的读优化所带来的优势就开始碾压数据库了。大部分的数据库都是Single-instance的,而数据仓库则是Multi-instances的distributed system。数据仓库在分配储存的节点的时候是根据PrimaryKey/PartitionKey来分配的,查询的时候不仅根据查询键的值来搜索对应节点位置,同时进行大量的<u>并行查询</u>。这使得在对大数据进行查询的时候有极大的优势。

<noscript>
image

</noscript>

image

但是,并不是所有的读操作,数据仓库一直都有优势。比如在如下两种情况时,数据仓库的读表现并不如数据库:

  1. 在对小量数据进行读取操作的时候,由于数据仓库要进行找Node的location之类的预运算,整体效率上反倒不如数据库。
  2. 如果读取操作的目标不是主键(PrimaryKey)或者分配键(PartitionKey),那么数据仓库的查询也需要进行全局扫描,效率上就不好说是否胜过数据库了。

这两点也是为什么现在即使有像Amazon Redshift这般强大的Datawarehouse应用,SQL Database仍然无法被取代的一部分主要原因。

  • 写(Write)操作对比

大多数情况下,数据仓库不太会进行精确的写操作。因为冗余行数太多,有时候只是改一个很小的字段,也会修改大量的行数。而对于数据库来说,由于其紧凑的表格结构,写操作就可以非常精细有效了。比如,我需要修改《Java Complete》这本书的版权,从1999改到2002,数据库里面只需要该一行,而数据仓库里面需要改5行。

<noscript>
image

</noscript>

image

数据仓库的写操作都是整段(表)刷新或者整段数据插入, 这也和它的用途——做数据分析有关系。由于数据仓库的整表刷新和分布式储存的特质,我们可以通过把PartitionKey设置成数据创建/更新的时间,然后记录一段时间内的历史数据。这对于数据分析以及利用数据进行决策都有重要意义。

虽然这里进行了数据库和数据仓库的对比,但是并不是想得出两者孰优孰劣的结论。实际情况是,很多的架构的存储方案都是数据库和数据仓库一起使用的。下面会介绍一种这类架构的简单例子。


常见相关架构以及数据目录(Data Catalog)

通常的软件架构简化一下就是,用户通过API和数据库交互。

<noscript>
image

</noscript>

image

这里如果要直接在数据库上做数据分析,数据监控等等任务的话,会有以下几个问题:

  • 数据分析通常涉及大量数据查询,可能会占用太多CPU从而影响软件的基本功能。
  • 数据库的表单结构通常比较复杂,需要数据分析人员对DB结构有深入的了解。
  • 数据库在进行大量数据查询的时候效率较低。
  • 开放数据库访问权限(即便只是读权限),尤其是给外组人员,会有安全隐患。

为了解决以上四个问题,我们可以通过利用脚本,每隔一段时间把数据库里面的所有数据Denormalize到数据仓库里面,在数据仓库里面进行数据分析。根据之前提到的数据仓库的所有的特性(独立不影响业务,表结构简单,读数据速度快,相对安全),这四个问题都可以得到很好的解决。

<noscript>
image

</noscript>

image

但是这里还是有一个小问题。如果有很多不同的组需要共享这个Datawarehouse,那么同样他们的脚本可能会相互影响。这里引入一下数据目录(Data Catalog)的概念来解决这个问题。

A data catalog is a metadata management tool designed to help organizations find and manage large amounts of data – including tables, files and databases – stored in their ERP, human resources, finance and e-commerce systems as well as other sources like social media feeds. - https://searchdatamanagement.techtarget.com/definition/data-catalog

通过数据目录储存元数据,然后发布出去让不同组的数据仓库都可以同步这个数据。这样,每个不同组的数据仓库都拿到了同样的Denormalized数据,但是却相互独立开了。

<noscript>
image

</noscript>

image

这样一个架构基本上是把做事务处理的数据库和做数据分析的数据仓库解耦了。同时增加了整个系统的可扩展性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容

  • 数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。 数据仓库:数据仓库系统的主要应...
    海墨星人阅读 461评论 0 0
  • ORA-00001: 违反唯一约束条件 (.) 错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。 O...
    我想起个好名字阅读 5,256评论 0 9
  • 个人自行阅读时候,翻译的文档。因为比较渣,如果有更合理或者错误的地方烦劳告知,我会做修改。Oracle Data ...
    窝窝的小黑屋阅读 1,214评论 0 3
  • 很实用的编程英语词库,共收录一千五百余条词汇。 第一部分: application 应用程式 应用、应用程序app...
    春天的蜜蜂阅读 1,341评论 0 22
  • 查理.琼斯说:除非你改变了交往的人或者阅读的书,否则,你的五年之后和现在完全一样。人是社会性动物,也是很容易受周围...
    浮_城阅读 331评论 0 1