1. Glide总览
Glide图片加载框架从总体来看采用三段论来让用户轻松加载图片。
- with()方法主要通过创建一个空白的Fragment盖在展示的页面上,感知展示页面的生命周期,来动态调整Glide内部请求等业务。详细参见Glide源码分析-生命周期管理
- load()方法完成通用请求的构建
- into()方法主要维护这运行队列和等待队列,当生命周期改变的时候,动态清除一些不必要加载的请求。同时还维护着活动缓存和内存缓存,多级缓存有利于节约资源和加载效率,最后如果没有缓存就采用网络请求的方式加载请求的内容。
2. with()
with()方法的详细分析可以参见上一篇Glide的叙述:Glide源码分析-生命周期管理。
总体来讲,with()方法中发生了如下事情:
- Glide类:主要做一些 init 工作,比如缓存,线程池,复用池的构建等等。
- RequestManagerRetriever类:主要是获得一个
RequestManager
请求管理类,然后绑定一个 Fragment - SupportRequestManagerFragment 类:用于管理请求的生命周期。
- RequestManager:主要用于对请求的管理封装。
3. load()
load()流程其实不是很复杂,主要做了通用资源类型的设置选项和启动负载,在RequestBuilder 中完成。流程如下图:
RequestBuilder : 这是一个通用请求构建类,可以处理通用资源类型的设置选项和启动负载。
public class RequestManager implements LifecycleListener,
ModelTypes<RequestBuilder<Drawable>> {
.....
public RequestBuilder<Drawable> load(@Nullable String string) {
//这里调用 Drawable 图片加载请求器为其加载
return asDrawable().load(string);
}
public RequestBuilder<Drawable> asDrawable() {
return as(Drawable.class);
}
@NonNull
@CheckResult
@Override
public RequestBuilder<Drawable> load(@Nullable Uri uri) {
return asDrawable().load(uri);
}
@NonNull
@CheckResult
@Override
public RequestBuilder<Drawable> load(@Nullable File file) {
return asDrawable().load(file);
}
public <ResourceType> RequestBuilder<ResourceType> as(
@NonNull Class<ResourceType> resourceClass) {
return new RequestBuilder<>(glide, this, resourceClass, context);
}
}
public class RequestBuilder<TranscodeType> extends BaseRequestOptions<RequestBuilder<TranscodeType>>
implements Cloneable, ModelTypes<RequestBuilder<TranscodeType>> {
public RequestBuilder<TranscodeType> load(@Nullable String string) {
return loadGeneric(string);
}
// 描述加载的数据源-这里可以看做是我们传递进来的 http://xxxx.png
@Nullable private Object model;
// 描述这个请求是否已经添加了加载的数据源
private boolean isModelSet;
private RequestBuilder<TranscodeType> loadGeneric(@Nullable Object model) {
this.model = model;
isModelSet = true;
return this;
}
// model是我们需要加载的数据源,可能为null,为了保证model一定被赋值,此处引进isModelSet来保证。
private RequestBuilder<TranscodeType> loadGeneric(@Nullable Object model) {
this.model = model;
isModelSet = true;
return this;
}
}
到这里 RequestBuilder 就构建好了, RequestBuilder构建出来,接下来就是重头戏into()。
4.into()
into()是所有流程中最最复杂的方法,有60多个步骤,此处我们分成几个环节来一一分析流程。
分析之前,我们脑子中一定记住从最初是状态开始翻代码,最初始状态就是:拿到了url,各级缓存都没有资源,需要从网上下载资源,然后加载到控件中。
into()整体流程图在Glide工程中src目录中。
4.1 确定控件大小
我们从网上加载的inputstram不可能是下载多少就加载多少,这样内存可能爆掉,或者效率很低,我们应该按需加载,控件多大,我们就将图片压缩到多大加载。
@NonNull
public ViewTarget<ImageView, TranscodeType> into(@NonNull ImageView view) {
Util.assertMainThread();
Preconditions.checkNotNull(view);
// 根据 ImageView 布局中的 scaleType 来重构 requestOptions
BaseRequestOptions<?> requestOptions = this;
if (!requestOptions.isTransformationSet()
&& requestOptions.isTransformationAllowed()
&& view.getScaleType() != null) {
//如果在 xml ImageView 节点中 没有设置 scaleType 那么默认在构造函数中进行了初始化为 mScaleType = ScaleType.FIT_CENTER;
switch (view.getScaleType()) {
.....
case FIT_CENTER:
case FIT_START:
case FIT_END:
//这里用到了克隆(原型设计模式),选择一个"居中合适"显示的方案
requestOptions = requestOptions.clone().optionalFitCenter();
break;
....
}
}
//调用 into 重载函数,创建一个 ViewTarget
return into(
//调用 buildImageViewTarget 构建一个 ImageView 类型的 Target(Bitmap/Drawable)
glideContext.buildImageViewTarget(view, transcodeClass),
/*targetListener=*/ null,
requestOptions,
Executors.mainThreadExecutor());
}
上面代码就两大步:
第一步:先拿到当前 ImageView getScaleType 类型的属性,然后重新 clone 一个进行配置;
第二步:调用 into 重载继续构建;
先来看下 glideContext.buildImageViewTarget 是怎么构建出来 ImageViewTarget 的:
@NonNull
public <X> ViewTarget<ImageView, X> buildImageViewTarget(
@NonNull ImageView imageView, @NonNull Class<X> transcodeClass) {
//调用 工厂模式 根据 transcodeClass 生成出一个对应的 ImageViewTarget
return imageViewTargetFactory.buildTarget(imageView, transcodeClass);
}
public class ImageViewTargetFactory {
@NonNull
@SuppressWarnings("unchecked")
public <Z> ViewTarget<ImageView, Z> buildTarget(@NonNull ImageView view,
@NonNull Class<Z> clazz) {
//如果目标的编码类型属于 Bitmap 那么就创建一个 Bitmap 类型的 ImageViewTarget
if (Bitmap.class.equals(clazz)) {
return (ViewTarget<ImageView, Z>) new BitmapImageViewTarget(view);
////如果目标的编码类型属于 Drawable 那么就创建一个 Drawable 类型的 ImageViewTarget
} else if (Drawable.class.isAssignableFrom(clazz)) {
return (ViewTarget<ImageView, Z>) new DrawableImageViewTarget(view);
} else {
throw new IllegalArgumentException(
"Unhandled class: " + clazz + ", try .as*(Class).transcode(ResourceTranscoder)");
}
}
}
上面 生产 Target 的时候注意一下,只要调用了 asBitmap
才会执行生产 BitmapImageViewTarget ,所以这里我们关注 Drawable 类型就行了,我们就先简单看看这个 target 内部怎么实现的,因为最后当拿到请求资源之后,会在target中设置资源到view中。
public class DrawableImageViewTarget extends ImageViewTarget<Drawable> {
public DrawableImageViewTarget(ImageView view) {
super(view);
}
@SuppressWarnings({"unused", "deprecation"})
@Deprecated
public DrawableImageViewTarget(ImageView view, boolean waitForLayout) {
super(view, waitForLayout);
}
@Override
protected void setResource(@Nullable Drawable resource) {
view.setImageDrawable(resource);
}
}
从上面代码可以知道 DrawableImageViewTarget 继承的是 ImageViewTarget 重写的 setResource 函数,实现了显示 Drawable 图片的逻辑。
回到主流程,into()重载方法中。
private <Y extends Target<TranscodeType>> Y into(
@NonNull Y target,
@Nullable RequestListener<TranscodeType> targetListener,
BaseRequestOptions<?> options,
Executor callbackExecutor) {
Preconditions.checkNotNull(target);
//这里的 isModelSet 是在 load 的时候赋值为 true 的,所以不会抛异常,确保了信息源一定被设置。
if (!isModelSet) {
throw new IllegalArgumentException("You must call #load() before calling #into()");
}
//为这个 http://xxx.png 生成一个 Glide request 请求
Request request = buildRequest(target, targetListener, options, callbackExecutor);
//相当于拿到上一个请求
Request previous = target.getRequest();
//下面的几行说明是否与上一个请求冲突,一般不用管 直接看下面 else 判断
// 如果两个请求参数和大小相同,就不用再请求了,直接返回。此if中也会判断前一个请求是否在请求中等状态,此处我们不用关心,第一次加载图片不会进入此if语句。
if (request.isEquivalentTo(previous)
&& !isSkipMemoryCacheWithCompletePreviousRequest(options, previous)) {
request.recycle();
if (!Preconditions.checkNotNull(previous).isRunning()) {
previous.begin();
}
return target;
}
//如果是一个新请求,先清理掉目标请求管理
requestManager.clear(target);
//重新为目标设置一个 Glide request 请求
target.setRequest(request);
//最后是调用 RequestManager 的 track 来执行目标的 Glide request 请求
requestManager.track(target, request);
return target;
}
以上核心就两个点:
第一点:为 target buildRequest 构建一个 Glide request 请求;
第二点:将构建出来的 Request 交于 RequestManager 来执行;
我们先简单的来看下怎么构建的 Request:
private Request buildRequest(
Target<TranscodeType> target,
@Nullable RequestListener<TranscodeType> targetListener,
BaseRequestOptions<?> requestOptions,
Executor callbackExecutor) {
return buildRequestRecursive(
target,
targetListener,
/*parentCoordinator=*/ null,
transitionOptions,
requestOptions.getPriority(),
requestOptions.getOverrideWidth(),
requestOptions.getOverrideHeight(),
requestOptions,
callbackExecutor);
}
private Request obtainRequest(
Target<TranscodeType> target,
RequestListener<TranscodeType> targetListener,
BaseRequestOptions<?> requestOptions,
RequestCoordinator requestCoordinator,
TransitionOptions<?, ? super TranscodeType> transitionOptions,
Priority priority,
int overrideWidth,
int overrideHeight,
Executor callbackExecutor) {
return SingleRequest.obtain(
context,
glideContext,
model,
transcodeClass,
requestOptions,
overrideWidth,
overrideHeight,
priority,
target,
targetListener,
requestListeners,
requestCoordinator,
glideContext.getEngine(),
transitionOptions.getTransitionFactory(),
callbackExecutor);
}
最后我们发现是 SingleRequest.obtain
来为我们构建的 Request 请求对象,开始只是初始化一些配置属性。
继续回到上面看request的track()方法。
//这里对当前 class 加了一个同步锁避免线程引起的安全性
synchronized void track(@NonNull Target<?> target, @NonNull Request request) {
//添加一个目标任务
targetTracker.track(target);
//执行 Glide request
requestTracker.runRequest(request);
}
public void runRequest(@NonNull Request request) {
//添加一个请求
requests.add(request);
//是否暂停
if (!isPaused) {
//没有暂停,开始调用 Request begin 执行
request.begin();
} else {
//如果调用了 暂停,清理请求
request.clear();
pendingRequests.add(request);
}
}
上面的逻辑是先为 requests
添加一个请求,看看是否是停止状态,如果不是就调用 request.begin();
执行。
这里的 Request
是一个接口,通过之前我们讲到 buildRequest
函数可知 Request
的实现类是 SingleRequest
我们就直接看它的 begin
函数.
@Override
public synchronized void begin() {
assertNotCallingCallbacks();
stateVerifier.throwIfRecycled();
startTime = LogTime.getLogTime();
if (model == null) {
//检查外部调用的尺寸是否有效
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
width = overrideWidth;
height = overrideHeight;
}
//失败的回调
int logLevel = getFallbackDrawable() == null ? Log.WARN : Log.DEBUG;
onLoadFailed(new GlideException("Received null model"), logLevel);
return;
}
if (status == Status.RUNNING) {
throw new IllegalArgumentException("Cannot restart a running request");
}
if (status == Status.COMPLETE) {
//表示资源准备好了
onResourceReady(resource, DataSource.MEMORY_CACHE);
return;
}
status = Status.WAITING_FOR_SIZE;
//这里表示大小已经准备好了
if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
// 需要加载的尺寸已经测量好了,接下里就开始加载引擎。
onSizeReady(overrideWidth, overrideHeight);
} else {
target.getSize(this);
}
//这里是刚刚开始执行的回调,相当于显示开始的进度
if ((status == Status.RUNNING || status == Status.WAITING_FOR_SIZE)
&& canNotifyStatusChanged()) {
target.onLoadStarted(getPlaceholderDrawable());
}
if (IS_VERBOSE_LOGGABLE) {
logV("finished run method in " + LogTime.getElapsedMillis(startTime));
}
}
@Override
public void onSizeReady(int width, int height) {
......
loadStatus =
engine.load(
glideContext,
model,
requestOptions.getSignature(),
this.width,
this.height,
requestOptions.getResourceClass(),
transcodeClass,
priority,
requestOptions.getDiskCacheStrategy(),
requestOptions.getTransformations(),
requestOptions.isTransformationRequired(),
requestOptions.isScaleOnlyOrNoTransform(),
requestOptions.getOptions(),
requestOptions.isMemoryCacheable(),
requestOptions.getUseUnlimitedSourceGeneratorsPool(),
requestOptions.getUseAnimationPool(),
requestOptions.getOnlyRetrieveFromCache(),
this,
callbackExecutor);
......
}
}
4.2 从不同缓存中搜寻资源
public synchronized <R> LoadStatus load(
GlideContext glideContext,
Object model,
Key signature,
int width,
int height,
Class<?> resourceClass,
Class<R> transcodeClass,
Priority priority,
DiskCacheStrategy diskCacheStrategy,
Map<Class<?>, Transformation<?>> transformations,
boolean isTransformationRequired,
boolean isScaleOnlyOrNoTransform,
Options options,
boolean isMemoryCacheable,
boolean useUnlimitedSourceExecutorPool,
boolean useAnimationPool,
boolean onlyRetrieveFromCache,
ResourceCallback cb,
Executor callbackExecutor) {
//拿到缓存或者请求的 key
EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations,
resourceClass, transcodeClass, options);
//根据 key 拿到活动缓存中的资源
EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
//如果 ActiveResources 活动缓存中有就回调出去
if (active != null) {
cb.onResourceReady(active, DataSource.MEMORY_CACHE);
return null;
}
//尝试从 LruResourceCache 中找寻这个资源
EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
if (cached != null) {
//如果内存缓存 Lru 中资源存在回调出去
cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
return null;
}
//------------- 走到这里说明活动缓存 跟内存 缓存都没有找到 -----------
//根据 Key 看看缓存中是否正在执行
EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
if (current != null) {
//如果正在执行,把数据回调出去
current.addCallback(cb, callbackExecutor);
if (VERBOSE_IS_LOGGABLE) {
logWithTimeAndKey("Added to existing load", startTime, key);
}
return new LoadStatus(cb, current);
}
// -------------- 走到这里说明是一个新的任务 ---------------
// -------------- 构建新的请求任务 ---------------
EngineJob<R> engineJob =
engineJobFactory.build(
key,
isMemoryCacheable,
useUnlimitedSourceExecutorPool,
useAnimationPool,
onlyRetrieveFromCache);
DecodeJob<R> decodeJob =
decodeJobFactory.build(
glideContext,
model,
key,
signature,
width,
height,
resourceClass,
transcodeClass,
priority,
diskCacheStrategy,
transformations,
isTransformationRequired,
isScaleOnlyOrNoTransform,
onlyRetrieveFromCache,
options,
engineJob);
//把当前需要执行的 key 添加进缓存
jobs.put(key, engineJob);
//执行任务的回调
engineJob.addCallback(cb, callbackExecutor);
//开始执行。
engineJob.start(decodeJob);
return new LoadStatus(cb, engineJob);
}
通过 engine.load
这个函数里面的逻辑,我们可以总结3点:
先构建请求或者缓存 KEY ;
根据 KEY 从内存缓存中查找对应的资源数据(ActiveResources(活动缓存,内部是一个 Map 用弱引用持有),LruResourceCache),如果有就回调 对应监听的 onResourceReady 表示数据准备好了。
-
从执行缓存中查找对应 key 的任务
如果找到了,就说明已经正在执行了,不用重复执行。
没有找到,通过 EngineJob.start 开启一个新的请求任务执行。
为了看主线,时刻记住开始强调的,所有缓存中都没有数据!直接看 EngineJob.start
public synchronized void start(DecodeJob<R> decodeJob) {
this.decodeJob = decodeJob;
//拿到 Glide 执行的线程池
GlideExecutor executor = decodeJob.willDecodeFromCache()
? diskCacheExecutor
: getActiveSourceExecutor();
//开始执行
executor.execute(decodeJob);
}
通过 DecodeJob
源码得知,它是实现的 Runnable
接口,这里 GlideExecutor 线程池开始执行,就会启动 DecodeJob 的 run 函数。
细心的小伙伴可以看出engineJob之后就decodeJob,不难想出,这两个任务之间一定有获取到资源的过程。而decodeJob包裹了engineJob,decodeJob是一个runnable,所以不难猜出会在线程池中网络请求资源,并且解码资源。下面我们就来看看是如何加载资源和解码的。
4.3 寻找资源加载器
此处不得不佩服框架考虑得的确很周全,我们需要加载资源,肯定就需要资源加载器,那么是不是只有一个加载器呢,当然不是,只有一个加载器的代码可能是我写的,哈哈哈。透露小秘密:框架会根据我们load传入的不同信息源,获取不同的资源加载器。下面我们来看一下流程。
上一小节结束我们可以看到包裹了engineJob的decodeJob任务会在线程池中执行,那么不难想出decodeJob的run()肯定会被调用。
class DecodeJob<R> implements DataFetcherGenerator.FetcherReadyCallback,
Runnable,
Comparable<DecodeJob<?>>,
Poolable {
// 线程执行调用 run
@Override
public void run() {
GlideTrace.beginSectionFormat("DecodeJob#run(model=%s)", model);
DataFetcher<?> localFetcher = currentFetcher;
try {
//是否取消了当前请求
if (isCancelled) {
notifyFailed();
return;
}
//执行
runWrapped();
} catch (CallbackException e) {
.....//一些错误回调
}
}
分析runWrapped:
private void runWrapped() {
switch (runReason) {
case INITIALIZE:
//获取资源状态
stage = getNextStage(Stage.INITIALIZE);
//根据当前资源状态,获取资源执行器
currentGenerator = getNextGenerator();
//执行
runGenerators();
break;
...
}
}
private Stage getNextStage(Stage current) {
switch (current) {
case INITIALIZE:
//如果外部调用配置了资源缓存策略,那么返回 Stage.RESOURCE_CACHE
//否则继续调用 Stage.RESOURCE_CACHE 执行。
return diskCacheStrategy.decodeCachedResource()
? Stage.RESOURCE_CACHE : getNextStage(Stage.RESOURCE_CACHE);
case RESOURCE_CACHE:
//如果外部配置了源数据缓存,那么返回 Stage.DATA_CACHE
//否则继续调用 getNextStage(Stage.DATA_CACHE)
return diskCacheStrategy.decodeCachedData()
? Stage.DATA_CACHE : getNextStage(Stage.DATA_CACHE);
case DATA_CACHE:
//如果只能从缓存中获取数据,则直接返回 FINISHED,否则,返回SOURCE。
//意思就是一个新的资源
return onlyRetrieveFromCache ? Stage.FINISHED : Stage.SOURCE;
case SOURCE:
case FINISHED:
return Stage.FINISHED;
default:
throw new IllegalArgumentException("Unrecognized stage: " + current);
}
}
通过上面代码可以知道,我们在找资源的执行器,这里由于我们没有在外部配置缓存策略所以,直接从源数据加载,看下面代码:
private DataFetcherGenerator getNextGenerator() {
switch (stage) {
//从资源缓存执行器
case RESOURCE_CACHE:
return new ResourceCacheGenerator(decodeHelper, this);
//源数据磁盘缓存执行器
case DATA_CACHE:
return new DataCacheGenerator(decodeHelper, this);
//什么都没有配置,源数据的执行器
case SOURCE:
return new SourceGenerator(decodeHelper, this);
case FINISHED:
return null;
default:
throw new IllegalStateException("Unrecognized stage: " + stage);
}
}
由于我们什么都没有配置,返回的是 SourceGenerator
源数据执行器。继续下面代码执行:
private void runGenerators() {
currentThread = Thread.currentThread();
startFetchTime = LogTime.getLogTime();
boolean isStarted = false;
//判断是否取消,是否开始
//调用 DataFetcherGenerator.startNext() 判断是否是属于开始执行的任务
while (!isCancelled && currentGenerator != null
&& !(isStarted = currentGenerator.startNext())) {
....
}
上面代码先看 currentGenerator.startNext()
这句代码,DataFetcherGenerator
是一个抽象类,那么这里执行的实现类是哪一个,可以参考下面说明:
状态标记 | 作用 | 执行器 |
---|---|---|
Stage.RESOURCE_CACHE | 从磁盘中获取缓存的资源数据 | ResourceCacheGenerator |
Stage.DATA_CACHE | 从磁盘中获取缓存的源数据 | DataCacheGenerator |
Stage.SOURCE | 一次新的请求任务 | SourceGenerator |
因为这里我们没有配置缓存,那么直接看 SourceGenerator
@Override
public boolean startNext() {
...
loadData = null;
boolean started = false;
while (!started && hasNextModelLoader()) {
//获取一个 ModelLoad 加载器
loadData = helper.getLoadData().get(loadDataListIndex++);
if (loadData != null
&& (helper.getDiskCacheStrategy().isDataCacheable(loadData.fetcher.getDataSource())
|| helper.hasLoadPath(loadData.fetcher.getDataClass()))) {
started = true;
//使用加载器中的 fetcher 根据优先级加载数据
loadData.fetcher.loadData(helper.getPriority(), this);
}
}
return started;
}
代码逻辑很简单,首先获取加载器,然后从加载器中使用fetcher来加载数据就可以了。
List<LoadData<?>> getLoadData() {
if (!isLoadDataSet) {
isLoadDataSet = true;
loadData.clear();
//从 Glide 注册的 Model 来获取加载器(注册是在 Glide 初始化的时候通过 registry
// .append()添加的)
List<ModelLoader<Object, ?>> modelLoaders = glideContext.getRegistry().getModelLoaders(model);
for (int i = 0, size = modelLoaders.size(); i < size; i++) {
ModelLoader<Object, ?> modelLoader = modelLoaders.get(i);
LoadData<?> current =
// 构建加载器。modelLoader是一个接口,需要知道是那个类的buildLoadData()来构建加载器。看看下面的分析。
modelLoader.buildLoadData(model, width, height, options);
//如果加载器器不为空,那么添加进临时缓存
if (current != null) {
loadData.add(current);
}
}
}
return loadData;
}
获取到加载器之后,会通过加载器中的fetcher加载数据,然后我们进入loadData()一看,fetcher是一个接口(DataFetcher<Data>),实现类有一大堆(如下图),我们根本没法知道到底是哪个来加载数据。
此处就是框架设计巧妙的一点了,到底是怎么知道哪个fetcher呢?
此时我们要回到 Glide 初始的时候 通过 Registry.append()
添加的!!!!!! 下面我们来看看。
Glide(
@NonNull Context context,
@NonNull Engine engine,
@NonNull MemoryCache memoryCache,
@NonNull BitmapPool bitmapPool,
@NonNull ArrayPool arrayPool,
@NonNull RequestManagerRetriever requestManagerRetriever,
@NonNull ConnectivityMonitorFactory connectivityMonitorFactory,
int logLevel,
@NonNull RequestOptionsFactory defaultRequestOptionsFactory,
@NonNull Map<Class<?>, TransitionOptions<?, ?>> defaultTransitionOptions,
@NonNull List<RequestListener<Object>> defaultRequestListeners,
boolean isLoggingRequestOriginsEnabled,
boolean isImageDecoderEnabledForBitmaps) {
......
registry
.append(Uri.class, InputStream.class, new UrlUriLoader.StreamFactory())
.append(URL.class, InputStream.class, new UrlLoader.StreamFactory())
.append(Uri.class, File.class, new MediaStoreFileLoader.Factory(context))
// 我们load传入的是一个url,所以我们的fetcher就是HttpGlideUrlLoader。
.append(GlideUrl.class, InputStream.class, new HttpGlideUrlLoader.Factory())
.append(byte[].class, ByteBuffer.class, new ByteArrayLoader.ByteBufferFactory())
.append(byte[].class, InputStream.class, new ByteArrayLoader.StreamFactory())
.append(Uri.class, Uri.class, UnitModelLoader.Factory.<Uri>getInstance())
.append(Drawable.class, Drawable.class, UnitModelLoader.Factory.<Drawable>getInstance())
.append(Drawable.class, Drawable.class, new UnitDrawableDecoder())
/* Transcoders */
.register(Bitmap.class, BitmapDrawable.class, new BitmapDrawableTranscoder(resources))
.register(Bitmap.class, byte[].class, bitmapBytesTranscoder)
.register(
Drawable.class,
byte[].class,
new DrawableBytesTranscoder(
bitmapPool, bitmapBytesTranscoder, gifDrawableBytesTranscoder))
.register(GifDrawable.class, byte[].class, gifDrawableBytesTranscoder);
......
}
从Glide的构造方法中,我们找到了线索,registry.append()会根据我们load()传入不同类型的参数,为我们注册不同的fetcher。
// 说明:load传入参数类型----加载后的资源形式--------加载器----
append(GlideUrl.class, InputStream.class, new HttpGlideUrlLoader.Factory())
我们可以这么理解,我们传入的参数是URL,使用HttpGlideUrlLoader来加载,最终返回一个InputStream流。看了注册加载器之后,我们继续回到如何构建加载器的主路线上:
// LoadData<InputStream>就是加载器包裹,HttpUrlFetcher就是我们要找到真正的网络资源加载器!!!!
@Override
public LoadData<InputStream> buildLoadData(
@NonNull GlideUrl model, int width, int height, @NonNull Options options) {
// GlideUrls memoize parsed URLs so caching them saves a few object instantiations and time
// spent parsing urls.
GlideUrl url = model;
if (modelCache != null) {
url = modelCache.get(model, 0, 0);
if (url == null) {
modelCache.put(model, 0, 0, model);
url = model;
}
}
int timeout = options.get(TIMEOUT);
return new LoadData<>(url, new HttpUrlFetcher(url, timeout));
}
此时就很清晰了,我们是通过HttpUrlFetcher
来加载资源的,然后我们进入资源加载环节。
4.4 加载资源
从上一小节中,我们知道了我们传入的url是通过HttpUrlFetcher
来加载资源。那么我们就进入HttpUrlFetcher
的loadData()。
@Override
public void loadData(@NonNull Priority priority,
@NonNull DataCallback<? super InputStream> callback) {
long startTime = LogTime.getLogTime();
try {
//http 请求,返回一个 InputStream 输入流
InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
//将 InputStream 以回调形式回调出去
callback.onDataReady(result);
} catch (IOException e) {
callback.onLoadFailed(e);
} finally {
...
}
}
private InputStream loadDataWithRedirects(URL url, int redirects, URL lastUrl,
Map<String, String> headers) throws IOException {
if (redirects >= MAXIMUM_REDIRECTS) {
throw new HttpException("Too many (> " + MAXIMUM_REDIRECTS + ") redirects!");
} else {
try {
if (lastUrl != null && url.toURI().equals(lastUrl.toURI())) {
throw new HttpException("In re-direct loop");
}
} catch (URISyntaxException e) {
// Do nothing, this is best effort.
}
}
urlConnection = connectionFactory.build(url);
for (Map.Entry<String, String> headerEntry : headers.entrySet()) {
urlConnection.addRequestProperty(headerEntry.getKey(), headerEntry.getValue());
}
urlConnection.setConnectTimeout(timeout);
urlConnection.setReadTimeout(timeout);
urlConnection.setUseCaches(false);
urlConnection.setDoInput(true);
urlConnection.setInstanceFollowRedirects(false);
urlConnection.connect();
stream = urlConnection.getInputStream();
if (isCancelled) {
return null;
}
final int statusCode = urlConnection.getResponseCode();
if (isHttpOk(statusCode)) {
return getStreamForSuccessfulRequest(urlConnection);
}
...//抛的异常我们暂时先不管
}
从上面代码我们可以看出 HttpURLConnection 作为 Glide 底层成网络请求的。请求成功之后直接返回的是一个输入流,最后会通过 onDataReady
回调到 DecodeJob的onDataFetcherReady 函数中。
此时我们已经从网络上获取到资源了,现在来看是如何回调的。
@Override
public void onDataReady(Object data) {
DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy();
if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) {
dataToCache = data;
cb.reschedule();
} else {
cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher,
loadData.fetcher.getDataSource(), originalKey);
}
}
这里会有 else 因为我们没有配置缓存,继续回调:
class DecodeJob<R> implements DataFetcherGenerator.FetcherReadyCallback,
Runnable,
Comparable<DecodeJob<?>>,
Poolable {
...
@Override
public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher,
DataSource dataSource, Key attemptedKey) {
this.currentSourceKey = sourceKey; //当前返回数据的 key
this.currentData = data; //返回的数据
this.currentFetcher = fetcher; //返回的数据执行器,这里可以理解为 HttpUrlFetcher
this.currentDataSource = dataSource; //数据来源 url
this.currentAttemptingKey = attemptedKey;
if (Thread.currentThread() != currentThread) {
runReason = RunReason.DECODE_DATA;
callback.reschedule(this);
} else {
GlideTrace.beginSection("DecodeJob.decodeFromRetrievedData");
try {
//解析返回回来的数据
decodeFromRetrievedData();
} finally {
GlideTrace.endSection();
}
}
}
...
}
至此,我们的数据已经从网络上加载完成。最后通过decodeFromRetrievedData()
方法来解析inputstream流。
4.5 解析资源
从上一小节,我们拿到了资源流,下面我们来看看是如何解析资源的。
//解析返回的数据
private void decodeFromRetrievedData() {
Resource<R> resource = null;
try {
// 调用 decodeFrom 解析 数据;HttpUrlFetcher , InputStream , currentDataSource
resource = decodeFromData(currentFetcher, currentData, currentDataSource);
} catch (GlideException e) {
e.setLoggingDetails(currentAttemptingKey, currentDataSource);
throwables.add(e);
}
//解析完成后,通知下去
if (resource != null) {
notifyEncodeAndRelease(resource, currentDataSource);
} else {
runGenerators();
}
}
private <Data> Resource<R> decodeFromData(DataFetcher<?> fetcher, Data data,
DataSource dataSource) throws GlideException {
...
Resource<R> result = decodeFromFetcher(data, dataSource);
....
return result;
} finally {
fetcher.cleanup();
}
}
@SuppressWarnings("unchecked")
private <Data> Resource<R> decodeFromFetcher(Data data, DataSource dataSource)
throws GlideException {
//获取当前数据类的解析器 LoadPath
LoadPath<Data, ?, R> path = decodeHelper.getLoadPath((Class<Data>) data.getClass());
//通过 LoadPath 解析器来解析数据
return runLoadPath(data, dataSource, path);
}
private <Data, ResourceType> Resource<R> runLoadPath(Data data, DataSource dataSource,
LoadPath<Data, ResourceType, R> path) throws GlideException {
Options options = getOptionsWithHardwareConfig(dataSource);
//因为这里返回的是一个 InputStream 所以 这里拿到的是 InputStreamRewinder
DataRewinder<Data> rewinder = glideContext.getRegistry().getRewinder(data);
try {
//将解析资源的任务转移到 Load.path 方法中
return path.load(
rewinder, options, width, height, new DecodeCallback<ResourceType>(dataSource));
} finally {
rewinder.cleanup();
}
}
注意上面代码,为了解析数据首先构建一个 LoadPath, 然后创建一个 InputStreamRewinder 类型的 DataRewinder, 最终将数据解析的操作放到了 LoadPath.load 方法中 ,接下来看下 LoadPath.load 方法的具体逻辑操作:
public Resource<Transcode> load(DataRewinder<Data> rewinder, @NonNull Options options, int width,
int height, DecodePath.DecodeCallback<ResourceType> decodeCallback) throws GlideException {
try {
return loadWithExceptionList(rewinder, options, width, height, decodeCallback, throwables);
} finally {
listPool.release(throwables);
}
}
private Resource<Transcode> loadWithExceptionList(DataRewinder<Data> rewinder,
@NonNull Options options,
int width, int height, DecodePath.DecodeCallback<ResourceType> decodeCallback,
List<Throwable> exceptions) throws GlideException {
Resource<Transcode> result = null;
//遍历内部存储的 DecodePath 集合,通过他们来解析数据
for (int i = 0, size = decodePaths.size(); i < size; i++) {
DecodePath<Data, ResourceType, Transcode> path = decodePaths.get(i);
try {
//这里才是真正解析数据的地方
result = path.decode(rewinder, width, height, options, decodeCallback);
} catch (GlideException e) {
...
}
...
return result;
}
最终通过path.decode()根据尺寸来解析inputstream流。
public Resource<Transcode> decode(DataRewinder<DataType> rewinder, int width, int height,
@NonNull Options options, DecodeCallback<ResourceType> callback) throws GlideException {
//调用 decodeResourec 将数据解析成中间资源
Resource<ResourceType> decoded = decodeResource(rewinder, width, height, options);
//解析完数据回调出去
Resource<ResourceType> transformed = callback.onResourceDecoded(decoded);
//转换资源为目标资源
return transcoder.transcode(transformed, options);
}
看看 decodeResource 怎么解析成中间资源的:
@NonNull
private Resource<ResourceType> decodeResource(DataRewinder<DataType> rewinder, int width,
int height, @NonNull Options options) throws GlideException {
...
try {
return decodeResourceWithList(rewinder, width, height, options, exceptions);
} finally {
...
}
}
@NonNull
private Resource<ResourceType> decodeResourceWithList(DataRewinder<DataType> rewinder, int width, int height, @NonNull Options options, List<Throwable> exceptions) throws GlideException {
Resource<ResourceType> result = null;
//noinspection ForLoopReplaceableByForEach to improve perf
for (int i = 0, size = decoders.size(); i < size; i++) {
ResourceDecoder<DataType, ResourceType> decoder = decoders.get(i);
try {
DataType data = rewinder.rewindAndGet();
if (decoder.handles(data, options)) {
data = rewinder.rewindAndGet();
// 调用 ResourceDecoder.decode 解析数据
result = decoder.decode(data, width, height, options);
}
} catch (IOException | RuntimeException | OutOfMemoryError e) {
...
}
return result;
}
可以看到数据解析的任务最终是通过 DecodePath 来执行的, 它内部有三大步操作
- 第一大步:deResource 将源数据解析成资源(源数据: InputStream, 中间产物: Bitmap)
- 第二大步:调用 DecodeCallback.onResourceDecoded 处理资源
- 第三大步:调用 ResourceTranscoder.transcode 将资源转为目标资源(目标资源类型: Drawable)
可以发现,通过上面的 decoder.decode 源码可知,它是一个接口,由于我们这里的源数据是 InputStream,所以,它的实现类是 StreamBitmapDecoder类 ,我们就来看下 它内部的解码过程:
@Override
public Resource<Bitmap> decode(@NonNull InputStream source, int width, int height,
@NonNull Options options)
throws IOException {
// Use to fix the mark limit to avoid allocating buffers that fit entire images.
final RecyclableBufferedInputStream bufferedStream;
final boolean ownsBufferedStream;
....
try {
// 根据请求配置来对数据进行采样压缩,获取一个 Resource<Bitmap>
return downsampler.decode(invalidatingStream, width, height, options, callbacks);
} finally {
....
}
}
最终是通过downsampler去根据目标的宽高,来对输入数据流进行压缩。
回到主线中的三大步:
public Resource<Transcode> decode(DataRewinder<DataType> rewinder, int width, int height,
@NonNull Options options, DecodeCallback<ResourceType> callback) throws GlideException {
//第一步: 调用 decodeResourec 将数据解析成中间资源 Bitmap
Resource<ResourceType> decoded = decodeResource(rewinder, width, height, options);
//第二步: 解析完数据回调出去
Resource<ResourceType> transformed = callback.onResourceDecoded(decoded);
//第三步: 转换资源为目标资源 Bitmap to Drawable
return transcoder.transcode(transformed, options);
}
解析完数据,看第二注释里面回调,最后会回调到 DecodeJob:
class DecodeJob<R> implements DataFetcherGenerator.FetcherReadyCallback,
Runnable,
Comparable<DecodeJob<?>>,
Poolable {
...
@Override
public Resource<Z> onResourceDecoded(@NonNull Resource<Z> decoded) {
return DecodeJob.this.onResourceDecoded(dataSource, decoded);
}
...
}
@Synthetic
@NonNull
<Z> Resource<Z> onResourceDecoded(DataSource dataSource,
@NonNull Resource<Z> decoded) {
@SuppressWarnings("unchecked")
//获取资源类型
Class<Z> resourceSubClass = (Class<Z>) decoded.get().getClass();
Transformation<Z> appliedTransformation = null;
Resource<Z> transformed = decoded;
//如果不是从磁盘资源中获取需要进行 transform 操作
if (dataSource != DataSource.RESOURCE_DISK_CACHE) {
appliedTransformation = decodeHelper.getTransformation(resourceSubClass);
transformed = appliedTransformation.transform(glideContext, decoded, width, height);
}
...
//构建数据编码的策略
final EncodeStrategy encodeStrategy;
final ResourceEncoder<Z> encoder;
if (decodeHelper.isResourceEncoderAvailable(transformed)) {
encoder = decodeHelper.getResultEncoder(transformed);
encodeStrategy = encoder.getEncodeStrategy(options);
} else {
encoder = null;
encodeStrategy = EncodeStrategy.NONE;
}
//根据编码策略,构建缓存 Key
Resource<Z> result = transformed;
boolean isFromAlternateCacheKey = !decodeHelper.isSourceKey(currentSourceKey);
if (diskCacheStrategy.isResourceCacheable(isFromAlternateCacheKey, dataSource,
encodeStrategy)) {
if (encoder == null) {
throw new Registry.NoResultEncoderAvailableException(transformed.get().getClass());
}
final Key key;
switch (encodeStrategy) {
case SOURCE:
//源数据 key
key = new DataCacheKey(currentSourceKey, signature);
break;
//... 省略 成吨的代码
}
//初始化编码管理者,用于提交内存缓存
LockedResource<Z> lockedResult = LockedResource.obtain(transformed);
deferredEncodeManager.init(key, encoder, lockedResult);
result = lockedResult;
}
//返回转换后的 Bitmap
return result;
}
此处说白了, onResourceDecoded 中, 主要是对中间资源做了如下的操作:
第一步:对资源进行了转换操作。比如 Fit_Center,CenterCrop, 这些都是在请求的时候配置的;
第二步:构建磁盘缓存的 key。
资源解析完成,已经存入磁盘,此处开始对资源继续转换。
4.6 资源转换
从上一节我们通过解码inputstream流得到Bitmap,然而我们显示需要将Bitmap转化成Drawable。下面我们继续接着上一小节看看资源是如何转换的。
public class DecodePath<DataType, ResourceType, Transcode> {
//省略成吨的代码 ...
Resource<Transcode> decode(DataRewinder<DataType> rewinder, int width, int height,
@NonNull Options options, DecodeCallback<ResourceType> callback) throws GlideException {
//第一步: 调用 decodeResourec 将数据解析成中间资源 Bitmap
Resource<ResourceType> decoded = decodeResource(rewinder, width, height, options);
//第二步: 解析完数据回调出去
Resource<ResourceType> transformed = callback.onResourceDecoded(decoded);
//第三步: 转换资源为目标资源 Bitmap to Drawable
return transcoder.transcode(transformed, options);
}
// 省略成吨的代码 ...
}
我们继续看第三步。通过源码可知,ResourceTranscoder 是一个接口,又因为解析完的数据是 Bitmap 所以它的实现类是 BitmapDrawableTranscoder ,最后看下它的 transcode 具体实现:
public class BitmapDrawableTranscoder implements ResourceTranscoder<Bitmap, BitmapDrawable> {
@Nullable
@Override
public Resource<BitmapDrawable> transcode(@NonNull Resource<Bitmap> toTranscode,
@NonNull Options options) {
return LazyBitmapDrawableResource.obtain(resources, toTranscode);
}
}
public final class LazyBitmapDrawableResource implements Resource<BitmapDrawable>,
Initializable {
private final Resources resources;
private final Resource<Bitmap> bitmapResource;
@Deprecated
public static LazyBitmapDrawableResource obtain(Context context, Bitmap bitmap) {
return
(LazyBitmapDrawableResource)
obtain(
context.getResources(),
BitmapResource.obtain(bitmap, Glide.get(context).getBitmapPool()));
}
@Deprecated
public static LazyBitmapDrawableResource obtain(Resources resources, BitmapPool bitmapPool,Bitmap bitmap) {
return (LazyBitmapDrawableResource) obtain(resources, BitmapResource.obtain(bitmap, bitmapPool));
}
@Nullable
public static Resource<BitmapDrawable> obtain(
@NonNull Resources resources, @Nullable Resource<Bitmap> bitmapResource) {
if (bitmapResource == null) {
return null;
}
return new LazyBitmapDrawableResource(resources, bitmapResource);
}
private LazyBitmapDrawableResource(@NonNull Resources resources,
@NonNull Resource<Bitmap> bitmapResource) {
this.resources = Preconditions.checkNotNull(resources);
this.bitmapResource = Preconditions.checkNotNull(bitmapResource);
}
@NonNull
@Override
public Class<BitmapDrawable> getResourceClass() {
return BitmapDrawable.class;
}
// Get 方法返回了一个 BitmapDrawable 对象
@NonNull
@Override
public BitmapDrawable get() {
return new BitmapDrawable(resources, bitmapResource.get());
}
@Override
public int getSize() {
return bitmapResource.getSize();
}
@Override
public void recycle() {
bitmapResource.recycle();
}
@Override
public void initialize() {
if (bitmapResource instanceof Initializable) {
((Initializable) bitmapResource).initialize();
}
}
}
转化终于完成了 ,将我们解析到的 bitmap 存放到 LazyBitmapDrawableResource 内部, 然后外界通过 get 方法就可以获取到一个 BitmapDrawable 的对象了,解析完就到了展示数据了,请看下面代码:
class DecodeJob<R> implements DataFetcherGenerator.FetcherReadyCallback,
Runnable,
Comparable<DecodeJob<?>>,
Poolable {
//解析返回的数据
private void decodeFromRetrievedData() {
Resource<R> resource = null;
try {
//第一步: 调用 decodeFrom 解析 数据;HttpUrlFetcher , InputStream , currentDataSource
resource = decodeFromData(currentFetcher, currentData, currentDataSource);
} catch (GlideException e) {
e.setLoggingDetails(currentAttemptingKey, currentDataSource);
throwables.add(e);
}
//第二步: 解析完成后,通知下去
if (resource != null) {
notifyEncodeAndRelease(resource, currentDataSource);
} else {
runGenerators();
}
}
第一步就解析完了数据, 现在第二步执行 notifyEncodeAndRelease函数:
private void notifyEncodeAndRelease(Resource<R> resource, DataSource dataSource) {
...
//通知调用层数据已经装备好了
notifyComplete(result, dataSource);
stage = Stage.ENCODE;
try {
//这里就是将资源磁盘缓存
if (deferredEncodeManager.hasResourceToEncode()) {
deferredEncodeManager.encode(diskCacheProvider, options);
}
} finally {
...
}
//完成
onEncodeComplete();
}
private void notifyComplete(Resource<R> resource, DataSource dataSource) {
setNotifiedOrThrow();
// 在 DecodeJob 的构建中, 我们知道这个 Callback 是 EngineJob
callback.onResourceReady(resource, dataSource);
}
}
可以看到上面的 DecodeJob.decodeFromRetrievedData 中主要做了三个处理:
第一个处理:解析返回回来的资源。
第二个处理:拿到解析的资源,如果配置了本地缓存,就缓存到磁盘。
第三个处理:通知上层资源准备就绪,可以使用了。
我们直接看 EngineJob 的 onResourceReady 回调函数:
@Override
public void onResourceReady(Resource<R> resource, DataSource dataSource) {
synchronized (this) {
this.resource = resource;
this.dataSource = dataSource;
}
notifyCallbacksOfResult();
}
@Synthetic
void notifyCallbacksOfResult() {
ResourceCallbacksAndExecutors copy;
Key localKey;
EngineResource<?> localResource;
synchronized (this) {
stateVerifier.throwIfRecycled();
if (isCancelled) {
resource.recycle();
release();
return;
} else if (cbs.isEmpty()) {
...
}
engineResource = engineResourceFactory.build(resource, isCacheable);
hasResource = true;
copy = cbs.copy();
incrementPendingCallbacks(copy.size() + 1);
localKey = key;
localResource = engineResource;
}
//回调上层 Engine 任务完成了
listener.onEngineJobComplete(this, localKey, localResource);
//遍历资源回调给 ImageViewTarget
for (final ResourceCallbackAndExecutor entry : copy) {
entry.executor.execute(new CallResourceReady(entry.cb));
}
decrementPendingCallbacks();
}
通过上面 EngineJob 的 onResourceReady 回调函数 主要做了 两个处理:
第一个处理:通知上层任务完成。
第二个处理:回调 ImageViewTarget 用于展示数据。
看下 listener.onEngineJobComplete 具体实现:
@SuppressWarnings("unchecked")
@Override
public synchronized void onEngineJobComplete(
EngineJob<?> engineJob, Key key, EngineResource<?> resource) {
if (resource != null) {
resource.setResourceListener(key, this);
//收到下游返回回来的资源,添加到活动缓存中
if (resource.isCacheable()) {
activeResources.activate(key, resource);
}
}
jobs.removeIfCurrent(key, engineJob);
}
最终通知 ImageViewTarget, 看下具体操作:
//遍历资源回调给 ImageViewTarget
for (final ResourceCallbackAndExecutor entry : copy) {
entry.executor.execute(new CallResourceReady(entry.cb));
}
private class CallResourceReady implements Runnable {
private final ResourceCallback cb;
CallResourceReady(ResourceCallback cb) {
this.cb = cb;
}
@Override
public void run() {
synchronized (EngineJob.this) {
if (cbs.contains(cb)) {
...
//返回准备好的资源
callCallbackOnResourceReady(cb);
removeCallback(cb);
}
decrementPendingCallbacks();
}
}
}
我们可以看到 CallResourceReady 实现 Runnable ,当 entry.executor.execute 线程池执行的时候就会调用 run ,最后我们继续跟 callCallbackOnResourceReady函数:
@Synthetic
synchronized void callCallbackOnResourceReady(ResourceCallback cb) {
try {
//回调给 SingleRequest
cb.onResourceReady(engineResource, dataSource);
} catch (Throwable t) {
throw new CallbackException(t);
}
}
SingleRequest onResourceReady 回调实现:
public synchronized void onResourceReady(Resource<?> resource, DataSource dataSource) {
stateVerifier.throwIfRecycled();
loadStatus = null;
... 省略成吨的代码
Object received = resource.get();
if (received == null || !transcodeClass.isAssignableFrom(received.getClass())) {
releaseResource(resource);
... 省略成吨的代码
onLoadFailed(exception);
return;
}
if (!canSetResource()) {
releaseResource(resource);
status = Status.COMPLETE;
return;
}
//当资源准备好的时候
onResourceReady((Resource<R>) resource, (R) received, dataSource);
}
private synchronized void onResourceReady(Resource<R> resource, R result, DataSource dataSource) {
... 省略成吨的代码
anyListenerHandledUpdatingTarget |=
targetListener != null
&& targetListener.onResourceReady(result, model, target, dataSource, isFirstResource);
if (!anyListenerHandledUpdatingTarget) {
Transition<? super R> animation =
animationFactory.build(dataSource, isFirstResource);
//回调给目标 ImageViewTarget 资源准备好了
target.onResourceReady(result, animation);
}
} finally {
isCallingCallbacks = false;
}
//加载成功
notifyLoadSuccess();
}
这一步主要把准备好的资源回调给显示层!!!!!!! 终于快看到胜利的曙光了。
4.7 显示资源
资源终于完全准备好了,下面就是加载资源到控件上。
public abstract class ImageViewTarget<Z> extends ViewTarget<ImageView, Z>
implements Transition.ViewAdapter {
...
@Override
public void onResourceReady(@NonNull Z resource, @Nullable Transition<? super Z> transition) {
if (transition == null || !transition.transition(resource, this)) {
setResourceInternal(resource);
} else {
maybeUpdateAnimatable(resource);
}
}
protected abstract void setResource(@Nullable Z resource);
...
}
private void setResourceInternal(@Nullable Z resource) {
//调用 setResource 函数,将资源显示出来
setResource(resource);
...
}
大家还记得么?在最开始构建的时候,我们知道只有调用 asBitmap 的时候实现类是 BitmapImageViewTarget
,在这里的测试,并没有调用这个函数,所以它的实现类是 DrawableImageViewTarget
,具体看下它内部实现:
public class DrawableImageViewTarget extends ImageViewTarget<Drawable> {
public DrawableImageViewTarget(ImageView view) {
super(view);
}
// Public API.
@SuppressWarnings({"unused", "deprecation"})
@Deprecated
public DrawableImageViewTarget(ImageView view, boolean waitForLayout) {
super(view, waitForLayout);
}
@Override
protected void setResource(@Nullable Drawable resource) {
view.setImageDrawable(resource);
}
}
这里看到抽象类中调用了 setResource ,子类实现并调用了 view.setImageDrawable(resource); 图片现在算是真正的显示出来了。