Openface人脸识别的原理与过程

Openface人脸识别的原理与过程:

https://zhuanlan.zhihu.com/p/24567586

原理可参考如下论文:

《OpenFace: A general-purpose face recognition library with mobile applications》


第一步:找出所有的面孔

我们流水线的第一步是人脸检测。

我们的目标是找出并比较当前像素与直接围绕它的像素的深度。然后我们要画一个箭头来代表图像变暗的方向:

用梯度来代替像素这事看起来没有明确目的,但其实背后的理由很充分。如果我们直接分析像素,同一个人明暗不同的两张照片将具有完全不同的像素值。但是如果只考虑亮度变化方向(direction)的话,明暗图像将会有同样的结果。这使得问题变得更容易解决!

但是保存每个像素的梯度太过细节化了,我们最终很有可能「一叶障目不见泰山」。如果能从更高的角度上观察基本的明暗流动,我们就可以看出图像的基本规律,这会比之前更好。

为了做到这一点,我们将图像分割成一些16×16像素的小方块。在每个小方块中,我们将计算出每个主方向上有多少个梯度(有多少指向上,指向右上,指向右等)。然后我们将用指向性最强那个方向的箭头来代替原来的那个小方块。

最终的结果是,我们把原始图像转换成了一个非常简单的表达形式,这种表达形式可以用一种简单的方式来捕获面部的基本结构:

利用HOG去detector人脸


HOG脸部图案

第二步为面部特征点估计(face landmark estimation)。

但这次我们会使用由瓦希德·卡奇米(Vahid Kazemi)和约瑟菲娜·沙利文(Josephine Sullivan)在2014年发明的方法ERT(集成回归树)

68点序号图

第三步:给脸部编码

所以,解决方案是训练一个深度卷积神经网络(就像我们在第三章做的那样)。但是,并不是让它去识别图片中的物体,这一次我们的训练是要让它为脸部生成128个测量值。通过训练网络来生成这个128个特征,使得这些特征具有如下关系:相同人的图片距离尽可能接近,而不同人的照片距离尽可能远。

每次训练要观察三个不同的脸部图像(Triplet loss):

1.加载一张已知的人的面部训练图像

2.加载同一个人的另一张照片

3.加载另外一个人的照片

机器学习专业人士把每张脸的128个测量值称为一个嵌入(embedding)。将复杂的原始数据(如图片)缩减为可由计算机生成的一个数列的方法,在机器学习(特别是语言翻译)中出现了很多次。我们正在使用的这种脸部提取方法是由Google的研究人员在2015年发明的,但也有许多类似方法存在。

该训练网络已经完成,我们只需要使用它即可生成128个特征值。

第四步:从编码中找出人的名字

面部识别分类器:基于简单线性SVM

总结:

1.使用HOG算法给图片编码,以创建图片的简化版本。使用这个简化的图像,找到其中看起来最像通用HOG面部编码的部分。

2.通过找到脸上的主要特征点,找出脸部的姿势。一旦我们找到这些特征点,就利用它们把图像扭曲,使眼睛和嘴巴居中。

3.把上一步得到的面部图像放入神经网络中,神经网络知道如何找到128个特征测量值。保存这128个测量值。

4.看看我们过去已经测量过的所有脸部,找出哪个人的测量值和我们要测量的面部最接近。这就是你要找的人!


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容