cube,mdx,olap都特么是啥?扶我起来…

摆脱第三方平台前端可视化开发预想:

1后台搭建服务器提供数据

2 mdx语句到数据库查询数据然后返回前端

3数据下钻重写mdx语句(多维数据库语句)。

cube :数据立方体,数据仓库的多维数据模型。

cube和传统的关系数据库和二维表不一样,可以有很多个维度,下图是一个三维的cube,在数据分析中,cube非常重要。

三维cube

mdx语句:多维数据库语句。

MDX语句(MultiDimensionalExpressions)是一种语言,支持多维对象与数据的定义和操作。它可以表达在线分析出来数据卡上的选择、计算和一些元数据定义等操作,并赋予用户表现查询结果的能力。

如同SQL查询一样,每个MDX 查询都要求有数据请求(SELECT子句)、起始点(FROM子句)和筛选(WHERE子句)。这些关键字以及其它关键字提供了各种工具,用来从多维数据集析取数据特定部分。MDX还提供了可靠的函数集,用来对所检索的数据进行操作,同时还具有用户定义函数扩展 MDX的能力。

olap引擎:数据联机分析处理引擎。

OLTP(联机事务处理)是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

OLAP的基本多维分析操作有钻取(roll up和drill down)、切片(slice)和切块(dice)、以及旋转(pivot)、drill across、drill through等。

钻取:

钻取是改变维的层次,变换分析的粒度。它包括向上钻取(roll up)和向下钻取(drill down)。roll up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而drill down则相反,它从汇总数据深入到细节数据进行观察或增加新维。

切片和切块:

切片和切块是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个,则是切块。

旋转:

旋转是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。

参考:

https://zhidao.baidu.com/question/2284855.html?&mzl=qb_xg_0&mzl_jy=0&word=olap%E5%BC%95%E6%93%8E&hitRelateOptimi=&ad_test=&esqb_20per=3&abtest=&log_pic=1

http://www.cnblogs.com/mq0036/p/4155832.html

百度百科

努力成为优秀的前端工程师!


>期待和大家交流,共同进步,欢迎大家加入我创建的与前端开发密切相关的技术讨论小组:

> - SegmentFault技术圈:[ES新规范语法糖](https://segmentfault.com/g/1570000010695363)

> - SegmentFault专栏:[趁你还年轻,做个优秀的前端工程师](https://segmentfault.com/blog/chennihainianqing)

>- 知乎专栏:[趁你还年轻,做个优秀的前端工程师](https://zhuanlan.zhihu.com/wyasy)

>- Github博客: [趁你还年轻233的个人博客](https://github.com/FrankKai/FrankKai.github.io)

>- 前端开发QQ群:660634678

>- 微信公众号: 人兽鬼 / excellent_developers

![](https://upload-images.jianshu.io/upload_images/2976869-157e8624bcdfd62a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

>努力成为优秀前端工程师!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容