10招犀利你的思想

Logical thinking helps you discern the truth, solve problems, and make good decisions -- unless your logic is flawed. Here are a few principles that will help ensure correct reasoning.

from https://www.techrepublic.com/blog/10-things/10-tips-for-sharpening-your-logical-thinking/

Logical thinking is critical for IT professionals, managers, and executives. You must be able to diagnose problems end users are having. You must be able to evaluate vendor claims. You must be able to refute your boss when he or she turns down your request for a raise or promotion. The following concepts will help you hone your logical thinking skills.

1: The conditional statement
Have you ever dropped your smartphone into water? Not good, correct? Let's assume, for purposes of this article, that every time it happens, without exception, that phone is ruined. In other words, this statement is true: "If you drop your smartphone into water, then it will become ruined."

This statement, in logic, is known as a conditional statement. The first part of the sentence states a condition or requirement. The second part of the sentence states the result of that condition. If the condition is fulfilled, the result will occur. If you've done any application programming, you doubtless have worked with conditional statements. The principles of conditional statements are the same for logical thinking.

2: Understanding premise and conclusion shorthand
The two parts of a conditional statement have specific terms with respect to logic. The first part is called a premise, and the second part is called a conclusion. Within a conditional statement, if a premise is true, the conclusion will be too, because it follows, or results from, the truth of the premise.

Sometimes, in shorthand, you will see the abbreviations "p" and "q" for "premise" and "conclusion," respectively. The causal relationship (the "then") is indicated by an arrow: →. Here, "p" would represent "If you drop your smartphone into water," "q" would represent "the smartphone will become ruined," and → would represent the "then." The general nature of a conditional statement can be represented as p → q.

Once we understand the structure of an original conditional statement in terms of p and q, we can understand three other statements related to it. They are the converse, the inverse, and the contrapositive. Knowing these three is important to avoid faulty reasoning and to detect faulty reasoning by others.

3: The converse statement
The converse of the original conditional statement simply reverses the premise and the conclusion. In shorthand terms, therefore, the converse is q → p. In our smartphone example, the converse statement would be: "If your smartphone is ruined, then it was because you dropped it into water."

As you can see, in this case the converse is not true, because a smartphone can be ruined in many other ways besides dropping it into water. Similarly, though someone who lives in Florida lives in the United States, not everyone who lives in the United States lives in Florida. Assuming that the converse is true, in fact, leads to the fallacy of the "false syllogism":

If a phone is dropped into water, it is ruined.
John's phone is ruined.
Therefore, John's phone must have been dropped into water.
An example of similar potentially faulty reasoning is the following:

Every computer that has virus x has symptom y.
Joe's computer has symptom y.
Therefore, Joe's computer has virus x.
This reasoning is faulty for the same reason — namely, that a computer could have symptom y for other reasons. A correct analysis would be the following:

If a computer has virus x, then it has symptom y.
Joe's computer has virus x.
Therefore, Joe's computer has symptom y.
The false syllogism is better illustrated this classic way:

Dogs have four legs.
Cats have four legs.
Therefore, dogs are cats.
4: The inverse statement
The inverse of the original statement keeps the original premise and original conclusion but negates each one. In shorthand, the inverse is ~p → ~q.

The inverse of the smartphone statement would be: "If you do not drop your smartphone into water, your smartphone will not become ruined." Sometimes, the inverse is true. But other times, such as with our example, it isn't. A smartphone can be ruined in many ways. Therefore, even if we refrain from dropping the phone into water, it doesn't prevent other bad things from happening to it. The inverse of the virus statement would be: "If a computer does not have virus x, it will not have symptom y." This statement might not be true if symptom y can result from reasons other than virus x.

Be careful of inverse reasoning.

5: The contrapositive statement
The contrapositive is either the converse of the inverse or the inverse of the converse. That is, it involves a negation of both the premise and the conclusion, along with their reversal. Our smartphone contrapositive would be: "If your smartphone is not ruined, then you did not drop it into water." The virus contrapositive would be "If a computer does not have symptom y, then it does not have virus x." In shorthand, the contrapositive is ~q → ~p.

Assuming the truth of the original conditional statement, the contrapositive is the only alternative statement that will always be true.

6: Necessary conditions
Closely related to the conditional and related statements are the ideas of necessary conditions and sufficient conditions.

A necessary condition is one that must be met for a certain result to be achieved. For a smartphone not to be ruined, it must be kept out of water. Therefore "keeping a smartphone out of water" is necessary to prevent it from being ruined. The absence of virus x is necessary to have assurance that a computer does not have symptom y.

I know the objections you are raising right now, but keep reading for my further points.

7: Sufficient conditions
A sufficient condition is one that, if met, absolutely guarantees the occurrence of a certain result — that is, a result that is dependent on that condition. Dropping a smartphone into water is sufficient for ruining that phone. Doing so guarantees that the phone is ruined. The presence of virus x is a sufficient condition for a computer to exhibit symptom y.

8: Necessary but not sufficient
A condition can be necessary but not sufficient. Keeping your smartphone out of water is necessary for preventing its ruin. However, even if you do so, your smartphone could be ruined in other ways, such as being crushed by a car or dropped from a height. In the same way, even if virus x is absent from the computer, they system could still display symptom y for some other reason. Therefore, keeping a smartphone out of water, and keeping virus x off a computer are necessary but not sufficient conditions for preventing smartphone ruin or the presence of symptom y.

9: Sufficient but not necessary
Similarly, a condition can be sufficient but not necessary. Dropping the smartphone into water is a sufficient condition for ruining it. However, it is not a necessary condition for ruining it. Having virus x is a sufficient condition for symptom y. However, if symptom y can arise from other causes, having virus x is not a necessary condition.

10: Neither necessary nor sufficient
A condition can be neither necessary nor sufficient with respect to a result. To prevent the ruin of your smartphone, it is neither necessary nor sufficient that its area code begin with an even number. To prevent virus x, it is neither necessary nor sufficient that the system unit have a property tag.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容