深度学习教程 Part 1

如果你想利用深度学习方法来识别图像,但却不知道如何上手的话,那么我想这篇文章可以帮助到你。

如果你不知道机器学习和卷积神经网络的话,那么我强烈建议你先看下 Adam Geitgey(https://medium.com/u/ba4c55e4aa3d)的文章

本文将构建一个卷积神经网络模型来读取并识别图像,对每个图像打上相应的标签。

环境配置

首先,我们需要配置下环境,你可以从官网(www.continuum.io/downloads)下载 Anaconda,并选择 Python 2.7版本。

安装完成后,你需要确认 NumPy, SciPy, Sphinx, pyyaml 等包是否已经成功安装,你可以利用搜索栏来搜寻这些软件包。

此外,我们还需要安装 Theano(http://www.deeplearning.net/software/theano),我们将采用最简单的方法来安装该软件库。如下所示:

在 Anaconda 界面中,打开终端界面

00ed
01ed

此外你也可以利用 git 来安装最新版本程序:

02ed

使用 Jupyter Notebook

从 Anaconda 登陆界面中打开 Jupyter notebook 并新建一个文件:

03ed

编程阶段

首先,我们需要载入相应的软件库

04ed

我们将以MNIST(http://yann.lecun.com/exdb/mnist/)数据集为例,并利用 Keras 来载入数据集。该数据集中包含了 60,000 张大小为 28*28 的图片,测试集中包含 10,000 张图片。

05ed

深度学习架构

我们将使用基于 Lenet-5 结构的神经网络[1],具体如下所示:

06ed
07ed

如果你对上述层级结构感到困惑的话,你可以参阅这个教程(http://neuralnetworksanddeeplearning.com/chap6.html#introducing_convolutional_networks)。

训练并测试模型

利用 CPU 来训练模型的话需要几分钟的计算时间,但是如果使用 GPU 的话仅需要几秒钟。

08ed

评估模型的效果:

09ed

其中测试集的得分是损失函数值,如 MSE,而测试精度则是预测结果的准确率。测试得分越小,测试精度越高,模型的拟合效果越好。结果显示,上述模型的测试得分为 3%,测试精度为 99%。

分类结果

别忘了我们的测试集中有 10,000 张图片,在这里我们只展示前 25 张图片的预测结果:

10ed
11ed

接下来我们还能做啥呢?我们还可以调整神经网络的结构,改变隐藏层的类型,改变迭代次数并观察模型的拟合效果是否变得更好。或者我们可以将训练好的模型保存下来以便于处理图像分类预测问题。当然我们也可以将预测错误的图片打印出来:

12ed

参考文献

[1] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.


原文链接:https://medium.com/@databolism/getting-start-with-deep-learning-a-hands-on-guide-for-complete-beginners-part-1-setting-up-c2737a2fc0d#.4y6kbdrvv

原文作者:Akina M.

译者:Fibears


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容