【译】Swift算法俱乐部-快速排序

Swift算法俱乐部

本文是对 Swift Algorithm Club 翻译的一篇文章。
Swift Algorithm Clubraywenderlich.com网站出品的用Swift实现算法和数据结构的开源项目,目前在GitHub上有18000+⭐️,我初略统计了一下,大概有一百左右个的算法和数据结构,基本上常见的都包含了,是iOSer学习算法和数据结构不错的资源。
🐙andyRon/swift-algorithm-club-cn是我对Swift Algorithm Club,边学习边翻译的项目。由于能力有限,如发现错误或翻译不妥,请指正,欢迎pull request。也欢迎有兴趣、有时间的小伙伴一起参与翻译和学习🤓。当然也欢迎加⭐️,🤩🤩🤩🤨🤪。
本文的翻译原文和代码可以查看🐙swift-algorithm-club-cn/Quicksort


快速排序(Quicksort)

目标:将数组从低到高(或从高到低)排序。

快速排序是历史上最着名的算法之一。 它是由Tony Hoare于1959年发明的,当时递归仍然是一个相当模糊的概念。

这是Swift中的一个实现,应该很容易理解:

func quicksort<T: Comparable>(_ a: [T]) -> [T] {
  guard a.count > 1 else { return a }

  let pivot = a[a.count/2]
  let less = a.filter { $0 < pivot }
  let equal = a.filter { $0 == pivot }
  let greater = a.filter { $0 > pivot }

  return quicksort(less) + equal + quicksort(greater)
}

译注:pivot 中心点,枢轴,基准。本文的pivot都翻译成“基准”。

将此代码放在playground 进行测试:

let list = [ 10, 0, 3, 9, 2, 14, 8, 27, 1, 5, 8, -1, 26 ]
quicksort(list)

谈一谈工作原理。 给定一个数组时,quicksort()根据“基准”变量将它分成三部分。这里,基准被视为数组中间的元素(稍后您将看到选择基准的其他方法)。

比基准元素小的所有元素都进入一个名为less的新数组。 所有等于基准元素都进入equal数组。你猜对了,所有比基准更大的元素进入第三个数组,greater。 这就是泛型类型T必须符合Comparable协议的原因,因为我们需要将元素与<==>进行比较。

一旦我们有了这三个数组,quicksort()递归地对less数组和more数组进行排序,然后将那些已排序的子数组与equal数组组合在一起,得到最终结果。

一个例子

让我们来看看这个例子。 数组最初是:

[ 10, 0, 3, 9, 2, 14, 8, 27, 1, 5, 8, -1, 26 ]

首先,我们选择基准8,因为它在数组的中间。 现在我们将数组拆分为少,相等和大的部分:

less:    [ 0, 3, 2, 1, 5, -1 ]
equal:   [ 8, 8 ]
greater: [ 10, 9, 14, 27, 26 ]

这是一个很好的拆分,因为lessgreater大致包含相同数量的元素。 所以我们选择了一个很好的基准,将数组从中间分开。

请注意,lessgreater数组尚未排序,因此我们再次调用quicksort()来排序这两个子数组。这与之前完全相同:选择一个中间元素并将子数组分成三个更小的部分。

来看看less数组:

[ 0, 3, 2, 1, 5, -1 ]

基准元素是中间的1(你也可以选择2,这没关系)。我们再次围绕基准元素创建了三个子数组:

less:    [ 0, -1 ]
equal:   [ 1 ]
greater: [ 3, 2, 5 ]

我们还没有完成,quicksort()再次在lessmore数组上被递归调用。 让我们再看一下less

[ 0, -1 ]

这次基准元素选择-1。 现在的子数组是:

less:    [ ]
equal:   [ -1 ]
greater: [ 0 ]

less数组是空的,因为没有小于-1的值; 其他数组各包含一个元素。 这意味着我们已经完成了递归,现在我们返回以对前一个greater数组进行排序。

greater数组是:

[ 3, 2, 5 ]

这与以前的工作方式相同:我们选择中间元素2作为基准元素,子数组为:

less:    [ ]
equal:   [ 2 ]
greater: [ 3, 5 ]

请注意,如果在这里选择3作为基准会更好 —— 会早点完成。 然而现在我们必须再次递归到greater数组以确保它被排序。这就体现,选择好的基准有多重要了。当你选择太多“bad”基准时,快速排序实际上变得非常慢。 之后会有更多说明。

当对greater子数组进行分区时,我们发现:

less:    [ 3 ]
equal:   [ 5 ]
greater: [ ]

现在我们已经完成了这层递归,因为我们无法进一步拆分数组。

重复此过程,直到所有子数组都已排序。 过程图:

现在,如果您从左到右阅读彩色框,则会获得已排序的数组:

[ -1, 0, 1, 2, 3, 5, 8, 8, 9, 10, 14, 26, 27 ]

这表明8是一个很好的初始基准,因为它也出现在排好序数组的中间。

我希望这已经清楚地表明快速排序的工作原理了。 不幸的是,这个版本的快速排序不是很快,因为我们对相同的数组使用filter()三次。有更聪明的方法分割数组。

分区

围绕数据块划分数组称为 分区,并且存在一些不同的分区方案。
如果一个数组是,

[ 10, 0, 3, 9, 2, 14, 8, 27, 1, 5, 8, -1, 26 ]

然后我们选择中间元素8作为一个数据块,然后分区后数组如下:

[ 0, 3, 2, 1, 5, -1, 8, 8, 10, 9, 14, 27, 26 ]
  -----------------        -----------------
  all elements < 8         all elements > 8

要实现上面操作的关键是,在分区之后,基准元素已经处于其最终排序位置。 其余的数字尚未排序,它们只是以基准数分区了。 快速排序对数组进行多次分区,直到所有值都在最终位置。

无法保证每次分区将元素保持在相同的相对顺序中,因此在使用基准“8”进行分区之后,也可能得到类似这样的内容:

[ 3, 0, 5, 2, -1, 1, 8, 8, 14, 26, 10, 27, 9 ]

唯一可以保证的是在基准元素左边是所有较小的元素,而右边是所有较大的元素。 因为分区改变相等元素的原始顺序,所以快速排序不会产生“稳定”排序(与归并排序不同)。 这大部分时间都不是什么大不了的事。

Lomuto的分区方案

在快速排序的第一个例子中,我告诉你,分区是通过调用Swift的filter()函数三次来完成的。 这不是很高效。 因此,让我们看一个更智能的分区算法,它可以 in place,即通过修改原始数组。

这是在Swift中实现Lomuto的分区方案:

func partitionLomuto<T: Comparable>(_ a: inout [T], low: Int, high: Int) -> Int {
  let pivot = a[high]

  var i = low
  for j in low..<high {
    if a[j] <= pivot {
      (a[i], a[j]) = (a[j], a[I])
      i += 1
    }
  }

  (a[i], a[high]) = (a[high], a[I])
  return I
}

在playground中测试:

var list = [ 10, 0, 3, 9, 2, 14, 26, 27, 1, 5, 8, -1, 8 ]
let p = partitionLomuto(&list, low: 0, high: list.count - 1)
list  // show the results

注意list需要是var,因为partitionLomuto()直接改变数组的内容(使用inout参数传递)。 这比分配新的数组对象更有效。

lowhigh参数是必要的,因为当在快速排序时并不一定排序整个数组,可能只是在某个区间。

以前我们使用中间数组元素作为基准,现在Lomuto方案的基准总是使用最后元素,a [high] 。 因为之前我们一直在以8作为基准,所以我在示例中交换了826的位置,以便8位于数组的最后并且在这里也用作枢基准。

经过Lomuto方案分区后,数组如下所示:

[ 0, 3, 2, 1, 5, 8, -1, 8, 9, 10, 14, 26, 27 ]
                        *

变量ppartitionLomuto()的调用的返回值,是7。这是新数组中的基准元素的索引(用星号标记)。

左分区从0到p-1,是[0,3,2,1,5,8,-1]。 右分区从p + 1到结尾,并且是[9,10,14,26,27](右分区已经排序的实属是巧合)。

您可能会注意到一些有趣的东西......值8在数组中出现不止一次。 其中一个8并没有整齐地在中间,而是在左分区。 这是Lomuto算法的一个小缺点,如果存在大量重复元素,它会使快速排序变慢。

那么Lomuto算法实际上是如何工作的呢? 魔术发生在for循环中。 此循环将数组划分为四个区域:

  1. a [low ... i] 包含 <= pivot 的所有值
  2. a [i + 1 ... j-1] 包含 > pivot 的所有值
  3. a [j ... high-1] 是我们“未查看”的值
  4. a [high]是基准值

In ASCII art the array is divided up like this:
用ASCII字符表示,数组按如下方式划分:

[ values <= pivot | values > pivot | not looked at yet | pivot ]
  low           i   i+1        j-1   j          high-1   high

循环依次查看从lowhigh-1的每个元素。 如果当前元素的值小于或等于基准,则使用swap将其移动到第一个区域。

注意: 在Swift中,符号(x, y) = (y, x)是在xy的值之间执行交换的便捷方式。 你也可以使用swap(&x,&y)

循环结束后,基准仍然是数组中的最后一个元素。 所以我们将它与第一个大于基准的元素交换。 现在,基准位于<=和>区域之间,并且数组已正确分区。

让我们逐步完成这个例子。 我们开始的数组是:

[| 10, 0, 3, 9, 2, 14, 26, 27, 1, 5, 8, -1 | 8 ]
   low                                       high
   I
   j

最初,“未查看”区域从索引0延伸到11。基准位于索引12。“values <= pivot”和“values> pivot”区域为空,因为我们还没有查看任何值。

看第一个值,10。 这比基准小吗? 不,跳到下一个元素。

[| 10 | 0, 3, 9, 2, 14, 26, 27, 1, 5, 8, -1 | 8 ]
   low                                        high
   I
       j

现在“未查看”区域从索引1到11,“values> pivot”区域包含数字“10”,“values <= pivot”仍为空。

看第二个值,0。 这比基准小吗? 是的,所以将100交换,然后将i向前移动一个。

[ 0 | 10 | 3, 9, 2, 14, 26, 27, 1, 5, 8, -1 | 8 ]
  low                                         high
      I
           j

现在“未查看”区域从索引2到11,“values> pivot”仍然包含“10”,“values <= pivot”包含数字“0”。

看第三个值,3。 这比基准小,所以用10换掉它得到:

[ 0, 3 | 10 | 9, 2, 14, 26, 27, 1, 5, 8, -1 | 8 ]
  low                                         high
         I
             j

“values <= pivot”区域现在是[0,3]。 让我们再做一次......9大于枢轴,所以简单地向前跳:

[ 0, 3 | 10, 9 | 2, 14, 26, 27, 1, 5, 8, -1 | 8 ]
  low                                         high
         I
                 j

现在“values> pivot”区域包含[10,9]。 如果我们继续这样做,那么我们最终会得到:

[ 0, 3, 2, 1, 5, 8, -1 | 27, 9, 10, 14, 26 | 8 ]
  low                                        high
                         I                   j

最后要做的是通过将a[i]a[high]交换来将基准放到特定位置:

[ 0, 3, 2, 1, 5, 8, -1 | 8 | 9, 10, 14, 26, 27 ]
  low                                       high
                         I                  j

然后我们返回i,基准元素的索引。

** 注意:** 如果您仍然不完全清楚算法是如何工作的,我建议您在playground 试验一下,以确切了解循环如何创建这四个区域。

让我们使用这个分区方案来构建快速排序。 这是代码:

func quicksortLomuto<T: Comparable>(_ a: inout [T], low: Int, high: Int) {
  if low < high {
    let p = partitionLomuto(&a, low: low, high: high)
    quicksortLomuto(&a, low: low, high: p - 1)
    quicksortLomuto(&a, low: p + 1, high: high)
  }
}

现在这非常简单。 我们首先调用partitionLomuto()来以基准元素(它始终是数组中的最后一个元素)重新排序数组。 然后我们递归调用quicksortLomuto()来对左右分区进行排序。

试试看:

var list = [ 10, 0, 3, 9, 2, 14, 26, 27, 1, 5, 8, -1, 8 ]
quicksortLomuto(&list, low: 0, high: list.count - 1)

Lomuto方案不是唯一的分区方案,但它可能是最容易理解的。 它不如Hoare的方案有效,后者需要的交换操作更少。

Hoare的分区方案

这种分区方案是由快速排序的发明者Hoare完成的。

下面是代码:

func partitionHoare<T: Comparable>(_ a: inout [T], low: Int, high: Int) -> Int {
  let pivot = a[low]
  var i = low - 1
  var j = high + 1

  while true {
    repeat { j -= 1 } while a[j] > pivot
    repeat { i += 1 } while a[i] < pivot

    if i < j {
      a.swapAt(i, j)
    } else {
      return j
    }
  }
}

在playground中测试:

var list = [ 8, 0, 3, 9, 2, 14, 10, 27, 1, 5, 8, -1, 26 ]
let p = partitionHoare(&list, low: 0, high: list.count - 1)
list  // show the results

注意,使用Hoare的方案,基准总是数组中的 first 元素,a [low]。 同样,我们使用8作为基准元素。
结果是:

[ -1, 0, 3, 8, 2, 5, 1, 27, 10, 14, 9, 8, 26 ]

请注意,这次基准根本不在中间。 与Lomuto的方案不同,返回值不一定是新数组中基准元素的索引。

结果,数组被划分为区域[low ... p][p + 1 ... high]。 这里,返回值p是6,因此两个分区是[-1,0,3,8,2,5,1][27,10,14,9,8,26]

由于存在这些差异,Hoare快速排序的实施略有不同:

func quicksortHoare<T: Comparable>(_ a: inout [T], low: Int, high: Int) {
  if low < high {
    let p = partitionHoare(&a, low: low, high: high)
    quicksortHoare(&a, low: low, high: p)
    quicksortHoare(&a, low: p + 1, high: high)
  }
}

Hoare的分区方案是如何工作的?我将把它作为练习让读者自己弄清楚。:-)

选择一个好的基准

Lomuto的分区方案总是为基准选择最后一个数组元素。 Hoare的分区方案使用第一个元素。 但这都不能保证这些基准是好的。

以下是为基准选择错误值时会发生的情况。 如果一个数组是:

[ 7, 6, 5, 4, 3, 2, 1 ]

我们使用Lomuto的方案。 基准是最后一个元素,1。 分区后:

   less than pivot: [ ]
    equal to pivot: [ 1 ]
greater than pivot: [ 7, 6, 5, 4, 3, 2 ]

现在以递归方式对“更大的”子数组进行分区,得到:

   less than pivot: [ ]
    equal to pivot: [ 2 ]
greater than pivot: [ 7, 6, 5, 4, 3 ]

再次:

   less than pivot: [ ]
    equal to pivot: [ 3 ]
greater than pivot: [ 7, 6, 5, 4 ]

等等。。。

这并不好,因为这样的快速排序可能比插入排序更慢。 为了使快速排序高效,需要将数组分成两个大约相等的部分。

这个例子的最佳基准是4,所以我们得到:

   less than pivot: [ 3, 2, 1 ]
    equal to pivot: [ 4 ]
greater than pivot: [ 7, 6, 5 ]

您可能认为这意味着我们应该始终选择中间元素而不是第一个或最后一个,但想象在以下情况下会发生什么:

[ 7, 6, 5, 1, 4, 3, 2 ]

现在,中间元素是1,它给出了与前一个例子相同的糟糕结果。

理想情况下,基准是您要分区的数组的 中位数(译注:大小在中间的) 元素,即位于排玩序数组中间的元素。当然,在你对数组进行排序之前,你不会知道中位数是什么,所以这就回到 鸡蛋和鸡 问题了。然而,有一些技巧可以改进。

一个技巧是“三个中间值”,您可以在找到数组中第一个,中间和最后一个的中位数。 从理论上讲,这通常可以很好地接近真实的中位数。

另一种常见的解决方案是随机选择基准。 有时这可能会选择次优的基准,但平均而言,这会产生非常好的结果。

以下是如何使用随机选择的基准进行快速排序:

func quicksortRandom<T: Comparable>(_ a: inout [T], low: Int, high: Int) {
  if low < high {
    let pivotIndex = random(min: low, max: high)         // 1

    (a[pivotIndex], a[high]) = (a[high], a[pivotIndex])  // 2

    let p = partitionLomuto(&a, low: low, high: high)
    quicksortRandom(&a, low: low, high: p - 1)
    quicksortRandom(&a, low: p + 1, high: high)
  }
}

与之前有两个重要的区别:

  1. random(min:max:)函数返回min...max范围内的整数,这是我们基准的索引。
  2. 因为Lomuto方案期望a[high]成为基准,我们将a[pivotIndex]a[high]交换,将基准元素放在末尾,然后再调用partitionLomuto()

在类似排序函数中使用随机数似乎很奇怪,但让快速排序在所有情况下都能有效地运行,这是有必要的。 坏的基准,快速排序的表现可能非常糟糕,O(n^2)。 但是如果平均选择好的基准,例如使用随机数生成器,预期的运行时间将变为O(nlogn),这是好的排序算法。

荷兰国旗🇳🇱分区

还有更多改进! 在我向您展示的第一个快速排序示例中,我们最终得到了一个像这样分区的数组:

[ values < pivot | values equal to pivot | values > pivot ]

但是正如您在Lomuto分区方案中看到的那样,如果多次出现基准元素,则重复项最后会在左分区。 而通过Hoare方案,重复基准元素可以遍布任意分区。 解决这个问题的方法是“荷兰国旗”分区,以荷兰国旗有三个频段命名,就像我们想拥有三个分区一样。

该方案的代码是:

func partitionDutchFlag<T: Comparable>(_ a: inout [T], low: Int, high: Int, pivotIndex: Int) -> (Int, Int) {
  let pivot = a[pivotIndex]

  var smaller = low
  var equal = low
  var larger = high

  while equal <= larger {
    if a[equal] < pivot {
      swap(&a, smaller, equal)
      smaller += 1
      equal += 1
    } else if a[equal] == pivot {
      equal += 1
    } else {
      swap(&a, equal, larger)
      larger -= 1
    }
  }
  return (smaller, larger)
}

这与Lomuto方案的工作方式非常相似,只是循环将数组划分为四个(可能为空)区域:

  • [low ... smaller-1] 包含< pivot 的所有值
  • [less ... equal-1] 包含 == pivot 的所有值
  • [equal ... larger]包含 > pivot 的所有值
  • [large ... high] 是我们“未查看”的值

Note that this doesn't assume the pivot is in a[high]. Instead, you have to pass in the index of the element you wish to use as a pivot.
请注意,这并不假设基准处于a[high]。 而是,必须传入要用作基准的元素的索引。

如何使用它的一个例子:

var list = [ 10, 0, 3, 9, 2, 14, 8, 27, 1, 5, 8, -1, 26 ]
partitionDutchFlag(&list, low: 0, high: list.count - 1, pivotIndex: 10)
list  // show the results

只是为了好玩,我们这次给它的另一个8的索引。 结果是:

[ -1, 0, 3, 2, 5, 1, 8, 8, 27, 14, 9, 26, 10 ]

注意两个8现在是如何在中间的。 partitionDutchFlag()的返回值是一个元组,(6,7)。 这是包含基准的范围。

以下是如何在快速排序中使用它:

func quicksortDutchFlag<T: Comparable>(_ a: inout [T], low: Int, high: Int) {
  if low < high {
    let pivotIndex = random(min: low, max: high)
    let (p, q) = partitionDutchFlag(&a, low: low, high: high, pivotIndex: pivotIndex)
    quicksortDutchFlag(&a, low: low, high: p - 1)
    quicksortDutchFlag(&a, low: q + 1, high: high)
  }
}

如果数组包含许多重复元素,则使用荷兰国旗分区可以提高效率。 (而且我不只是这么说,因为我是荷兰人!)

注意: partitionDutchFlag()的上述实现使用自定义swap()来交换两个数组元素的内容。 与Swift自带的swapAt()不同,当两个索引引用相同的数组元素时,这不会产生错误。

public func swap<T>(_ a: inout [T], _ i: Int, _ j: Int) {
    if i != j {
        a.swapAt(i, j)
    }
}

扩展阅读

快速排序的维基百科

作者:Matthijs Hollemans
翻译:Andy Ron
校对:Andy Ron

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • 目标:将一个数组按照由低到高(或者由高到低)的顺序排序。 快速排序是历史上最著名的算法之一。1959年由 Tony...
    唐先僧阅读 5,191评论 1 3
  • 归并排序和快速排序都用到了分治思想,非常巧妙。我们可以借鉴这个思想,来解决非排序的问题。 归并排序 归并排序的核心...
    被吹落的风阅读 1,330评论 0 3
  • quicksort可以说是应用最广泛的排序算法之一,它的基本思想是分治法,选择一个pivot(中轴点),将小于pi...
    黎景阳阅读 446评论 0 1
  • 当用户试图通过 HTTP 访问一台正在运行 Internet 信息服务 (IIS) 的服务器上的内容时,IIS 返...
    宁梓茞阅读 504评论 0 0
  • 不知不觉就到了大三,我依旧在学生会,两年的学习部生涯,到大三我成了编辑部部长,而以前我的干事现在都跟我平级...
    生活比梦更浪漫阅读 713评论 1 4