关于lightgbm处理category特征的理解

之前一直使用的集成回归树模型都是RF,Xgboost,GBDT这三个,其中RF是bagging思想,Xgboost和GBDT是boosting思想。但是在尝试了微软开源的Lightgbm之后,感觉再也回不去了。这款横空出世的轻量级tree boost模型,在不损失精度的情况下,大大提升了计算效率。同时也做出了一些改进。在这里先聊一聊它对‘category’’这种类别型数据的处理的支持。

如果你对算法有一定的了解,你会知道是无法直接处理类别型数据的,即离散特征。我们需要对类别型数据做一个one-hot,将类别型数据稀疏化。例如用鞋子品牌这一特征维度对鞋子进行分类:耐克鞋,阿迪鞋,李宁鞋。你不能将他们编码成(0,1,2),因为这样你就已经不公平的定义了三者之间的距离,阿迪和耐克的距离是1,而李宁和耐克的距离是2,我们不能这样贸然定义,不能做一个莽夫。众生平等,所以我们要一视同仁,采取one-encode编码将三者转换为(1,0,0),(0,1,0),(0,0,1)。让距离的计算变得更加合理。

而Lightgbm可以直接支持category特征的处理,在用pandas结构使用LGB时可以指定哪一列是类别型数据,省去one-hot的步骤。如果类别过多,如商品ID,在one-hot处理后数据会变得过于稀疏,大大增加了训练集的大小,浪费计算资源。而LGB则会采用一种直方图式的方法去处理,max bin的默认值是256,对于category类型的feature,则是每一种取值放入一个bin,且当取值的个数大于max bin数时,会忽略那些很少出现的category值。在求split时,对于category类型的feature,算的是"按是否属于某个category值划分"的gain,它的实际效果就是类似one-hot的编码方法。

在最近的一个项目中,我第一直觉认为商品ID应该是和商品销量高度相关的特征,对商品ID进行one-hot后,在输出的feature importance中该特征得分非常高,也符合我的直觉。但是最终结果却变差了。针对这一问题,我个人的理解是,在过于稀疏化后,相当于变相减少了数据量,在学习能力很强的模型下,很容易导致过拟合的现象,若不能获取更多的数据,可以考虑放弃该列特征或者将商品ID按照其他的方法进行重新分成各大类,降低稀疏化程度,也可以获得不错的效果。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容

  • https://developers.google.com/machine-learning/crash-cour...
    iOSDevLog阅读 2,653评论 1 11
  • 从前慢 记得早先少年时 大家诚诚恳恳 说一句 是一句 清早上火车站 长街黑暗无行人 卖豆浆的小店冒着热气 从前的日...
    四乔兮阅读 296评论 1 5
  • 你是一条恶狗,长着黑色的毛,浑身散发狗味,你的心不再是狗心,别以为在世界上多活上几年,你就无法无天,那怕你在活过十...
    蛮丶阅读 204评论 0 1
  • The only things you learn are the things you tame,said th...
    味道与色调阅读 322评论 0 1