笔记】根据公交卡出行记录识别小偷

【笔记】根据公交卡出行记录识别小偷

2018年02月09日 19:23:27 稻蛙 阅读数:327

案例来源:@Bowen Du

案例地址:http://www.kdd.org/kdd2016/papers/files/adf0629-duA.pdf

(以下为案例的简要概述,便于之后能快速检索到相关内容。部分文字与图片可能直接来自原文,如有侵权请告知,谢谢)

1. 目标:根据公交卡出行记录识别小偷

2. 数据:

1)automated fare collection (AFC) systems的数据集(即北京智能公交一卡通数据),包括地铁与公交刷卡记录,在2014年4-6月共有600w用户的16亿条记录

2)根据新浪微博搜索,匹配到一些小偷的公交卡id

3)各个站点附近的POI数据,将其划入home、word、education等类别
image

3. 特征提取

1)出行时间

2)出行频率

3)短途出行占比(<3站的出行次数占所有出行次数的比例):因为小偷会经常换路线避免被乘客抓到

4)出行模式:大部分出行都是有模式的,如早高峰是 住宅区→中转站→工作区,而小偷的出行会缺乏这种模式

5)高频访问地图:一些地区容易偷窃,而且小偷也喜欢在自己熟悉的区域下手

6)与常规出行的背离程度:给定出发点和目的,大部分人的路线差别不大,一般是距离最短或者时间最短,而小偷则不符合这个模式

7)历史行为:七日历史行为的中位数、平均数等
image

4. 识别小偷:因为正例负例规模差距大,一些监督学习算法会有苦难;使用无监督学习方法,容易产生大量误报

1)无监督学习:采用无监督学习做异常检测,如果是正常样本,则过滤掉,下一步骤中只对可能的异常样本做检测。这里采用正常的用户行为做one-class SVM,实现无监督的异常检测

2)有监督学习:缩小了样本后,征服例比例规模差距缩小,因此可以做有监督学习。这里采用SVM做有监督学习

5. 效果

image

</article>

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352