RBPF-gmapping

Summary

RBPF divides the slam problem into two parts: localization and mapping

drawbacks: the number of particles  and the particle-depletion problem

challenges: reduces the quantity of particles

contributions in paper [ Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters---Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard ]

1. the improved proposal distribution considering the movement of robot and the recent observation that gives accurate manner

2. adaptive resampling technique that reducing the risk of depletion  


Algorithm

1.mapping with known poses P(m| x, z)

2.estimate the trajectories P(x| z, u) using PF

 PF———E.X. SIR

procedure:1) sampling from proposal x(i) [how to compute proposal]

                    2) importance weighting w(i) —— give a recursive formulation

                    3) resampling  [when the resampling step should be carried out]

                     4) map estimation P(m(i)| x(i), z)


Part I : improved proposal distribution

used: odometry motion model——easy to compute but suboptimal when the sensor more precise than odometry

improved: integrating the most recent sensor observation z into proposal——optimal respect to weights——gaussian approximation for each particle

how to compute the gaussian approximation

1.scan matcher to determine the meaningful area L of likelihood function

where scan matcher can use lots of algorithms, and gradient-descent search

2.sampling in the L and evaluate the points

Part II : adaptive resampling

resampling can decrease the computation but maybe remove the good particles

give a N(eff) which represent the as threshold N/2

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,499评论 0 10
  • 终于连最后没舍得删的短信也删了,终于我下定决心要忘记你了。虽然难过,短时间内恐怕还会时不时想起你,但是我还是想结束...
    迷妹属性阅读 116评论 0 0
  • 一布友把她收藏的老粗布发给我,问我要不?这家伙知道我爱布,看见美布走不动了。从下午7点多钟看微信图片,一直到现...
    静之语阅读 907评论 3 4