时间序列建模分析

时序数据的特点:
1.时间序列数据依赖于时间,但不一定是时间的严格函数。
2.时间序列数据每时刻上的值具有一定的随机性,不可能完全准确地用历史值去预测。
3.时间序列数据前后时刻(但不一定是相邻时刻)的数值往往具有相关性。
4.从整体上看,时间序列往往会呈现出某种趋势性或出现周期性变化的现象。

分类:
按研究对象分类:一元时间序列和多元时间序列。
按时间参数分类:离散时间序列和连续时间序列。
按统计特性分类:平稳时间序列和非平稳时间序列。
按分布规律分类:高斯型时间序列和非高斯型时间序列

1.统计时序分析
1. 频域分析
2. 时域分析

2.平稳时间序列检验
什么是平稳时间序列?这就需要我们从概率统计的角度来定义。一般来讲,平稳时间序列有两种定义,分别是:严平稳时间序列和宽平稳时间序列。其中,严平稳要求序列所有的统计性质都不会随着时间的推移而发生变化。宽平稳则认为只要保证序列 [二阶矩](https://en.wikipedia.org/wiki/Moment_(mathematics) 平稳,就代表序列稳定。显然,严平稳比宽平稳的条件严格。严平稳是对序列联合分布的要求,以保证序列所有的统计特征都相同。

关于序列平稳性的检验,一般有两种方法,分别是:图检验和假设检验。图检验是根据时序图和自相关图显示的特征作出判断,因其操作简便而运用广泛。简单来讲,如果一张时序图呈现出明显的增长和下降趋势,那么就一定不平稳。


image.png

3.自相关图

4.纯随机性检验
怎样判断一个平稳序列是否随机呢?这就会用到纯随机性检验。纯随机性检验的过程中,一般会涉及到两个统计量,分别是:Q 统计量和 LB 统计量(Ljung-Box)。但由于 LB 统计量是 Q 统计量的修正,所以业界通常所称的 Q 统计量也就是 LB 统计量。

Python 中,我们可以利用 statsmodels 统计计算库中的 acorr_ljungbox() 函数计算 LB 统计量,该函数默认会返回 LB 统计量和 LB 统计量的 P 值。如果 LB 统计量的 P 值小于 0.05,我们则认为该序列为非随机序列,否则就为随机序列。

5.ARMA介绍及建模
ARMA 模型的全称是自回归移动平均模型,它是目前最常用的拟合平稳序列的模型。ARMA 模型一般又可以被细分为 AR 自回归模型,MA 移动平均模型和 ARMA 三类。


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容