决策树
计算香农熵
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2)
return shannonEnt
建一组假数据
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataSet, labels
运行划分数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
#如果featVec第axis+1项的值等于需匹配的value
if featVec[axis] == value:
#featVec中不包含第axis+1项的剩余部分
print 'axis: %d, value: %d, featVec:' % (axis, value), featVec
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
运行寻找最好的划分方式
def chooseBestFeatureToSplit(dataSet):
# 特征值的数量,不包含第三项标签
numFeatures = len(dataSet[0]) - 1
bestEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
# 列出所有第i+1项的值作为一个列表
featList = [example[i] for example in dataSet]
# 列表中的值去重创建集合
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
#找到划分后的子集
subDataSet = splitDataSet(dataSet,i,value)
prob = len(subDataSet)/float(len(dataSet))
print 'subDataSet:',subDataSet,'\nlen(subDataSet):',len(subDataSet),', prob:',prob
#将所有value的熵相加
newEntropy += prob * calcShannonEnt(subDataSet)
print "i: %d, value: %d, newEntropy: %f\n" % (i,value,newEntropy)
# 信息增益就是熵的减少
infoGain = bestEntropy - newEntropy
print "i: %d, bestEntropy:%f, infoGain(bestEntropy - newEntropy): %f\n" % (i,bestEntropy,infoGain)
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
运行寻找最多数的标签
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount
创建决策树
def createTree(dataSet,labels):
# 取标签列表
classList = [example[-1] for example in dataSet]
print '\nclassList',classList
# 如果classList中第一个元素的数量与总元素数量相同,即classList中的元素均为相同元素
if classList.count(classList[0]) == len(classList):
print 'oh!classList[0]',classList[0],'classList.count(classList[0])',classList.count(classList[0]),'len(classList)',len(classList)
# myTree[bestFeatLabel][value] = return的classlist[0]
return classList[0]
# 如果最优解也无法完全将分类划分的话,返回出现最多的类别
if len(dataSet[0]) == 1:
return majorityCnt(classList)
# 寻找最好的划分方式
bestFeat = chooseBestFeatureToSplit(dataSet)
# 获取最好的划分方式对应的实际划分标签
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
# 在标签中去掉最好的划分方式对应的标签
del(labels[bestFeat])
# 最好的划分方式包含的所有值
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
print 'uniqueVals', uniqueVals
for value in uniqueVals:
subLabels = labels[:]
# 递归调用本函数
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
print 'bestFeatLabel',bestFeatLabel,'value',value,'本次myTree', myTree
return myTree
运行使用文本注解绘制节点树
新建treePlottter.py
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle = 'sawtooth', fc = '0.8')
leafNode = dict(boxstyle = 'round4', fc = '0.8')
arrow_args = dict(arrowstyle = '<-')
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
# nodeTxt文本注解, centerPt终点坐标, parentPt起点坐标, nodeType文本框样式
# 创建一个描述 annotate(s, xy, xytext=None, xycoords='data',textcoords='data', arrowprops=None, **kwargs)
# s : 描述的文本
# xy、xytext: 起点及终点坐标
# xycoords 、textcoords : 给定坐标系,axes fraction(0,0是)轴域左下角,(1,1)是轴域右上角。data为使用轴域数据坐标系
# arrowstyle : 箭头样式'->'指向标注点 '<-'指向标注内容
createPlot.ax1.annotate(nodeTxt, xy = parentPt, xycoords = 'axes fraction', xytext = centerPt, textcoords = 'axes fraction', va = 'center', ha = 'center', bbox = nodeType, arrowprops = arrow_args)
def createPlot():
fig = plt.figure(1, facecolor = 'white')
fig.clf()
createPlot.ax1 = plt.subplot(111, frameon = False)
plotNode(U'决策节点', (0.5, 0.1), (0.1, 0.5), decisionNode)
plotNode(U'叶节点', (0.8, 0.1), (0.3, 0.8), leafNode)
plt.show()
运行获取叶节点的数目和树的层数
def getNumLeafs(myTree):
# 获取叶子节点数
numLeafs = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
# 获取层数
maxDepth = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else:
thisDepth = 1
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def retrieveTree(i):
# 一组假数据,方便使用
listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]
return listOfTrees[i]
运行绘制树形图
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree)
depth = getTreeDepth(myTree)
firstStr = myTree.keys()[0]
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
print '1 plotTree.xOff', plotTree.xOff, 'plotTree.yOff', plotTree.yOff, 'cntrPt', cntrPt, 'parentPt', parentPt
plotMidText(cntrPt, parentPt, nodeTxt)
print '\tmidText "%s" drawn,' % nodeTxt, '起点',parentPt,', 终点',cntrPt
plotNode(firstStr, cntrPt, parentPt, decisionNode)
print '\tdecisionNode "%s" drawn,' % firstStr, '起点',parentPt,', 终点',cntrPt
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
print '2 plotTree.xOff', plotTree.xOff, 'plotTree.yOff', plotTree.yOff
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key], cntrPt, str(key))
else:
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
print '3 plotTree.xOff', plotTree.xOff, 'plotTree.yOff', plotTree.yOff
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
print '\tleafNode "%s" drawn,' % secondDict[key], '起点 (',plotTree.xOff, plotTree.yOff,'), 终点',cntrPt
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
print '4 plotTree.xOff', plotTree.xOff, 'plotTree.yOff', plotTree.yOff
def createPlot(inTree):
fig = plt.figure(1, facecolor = 'white')
fig.clf()
axprops = dict(xticks = [], yticks = [])
createPlot.ax1 = plt.subplot(111, frameon = False, **axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree, (0.5,1.0), '')
plt.show()
运行使用决策树执行分类
def classify(inputTree, featLabels, testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec=)
else:
classLabel = secondDict[key]
return classLabel
运行决策树的存储
def storeTree(inputTree,filename):
import pickle
fw = open(filename, 'w')
pickle.dump(inputTree,fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
运行