Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting(论文阅读02)

diffusion process:扩散过程

背景

交通流量预测属于时空预测的范围,难点如下:

  • (1)对道路网络的复杂空间依赖性,
  • (2)随路况变化的非线性时间动态变化以及
  • (3)长期预报的固有困难
    我们建议将交通流建模为有向图上的扩散过程,并引入扩散卷积递归神经网络(DCRNN),这是一种用于交通预测的深度学习框架,在交通流中纳入了时空依赖性。
    如何做:
    DCRNN使用图形上的双向随机游走捕获空间相关性,并使用具有计划采样的编码器-解码器体系结构捕获时间相关性。

问题描述

  • 任务:目的是在历史交通速度和基础道路网络给定的情况下,预测传感器网络的未来交通速度。
    困难:一方面,交通时间序列显示出强大的时间动态。高峰时间或事故等反复发生的事件可能会导致不稳定,从而难以长期预测。另一方面,道路网络上的传感器包含复杂而独特的空间相关性

数据集介绍

我们在两个现实世界的大规模数据集上进行了实验:(1)METR-LA此交通数据集包含从洛杉矶县高速公路上的环路检测器收集的交通信息(Jagadish等,2014)。我们选择了207个传感器,并收集了从2012年3月1日到2012年6月30日的4个月的数据进行实验。 (2)PEMS-BA Y该交通数据集由加利福尼亚州运输机构(CalTrans)绩效评估系统(PeMS)收集。我们在湾区选择了325个传感器,并收集了从2017年1月1日到2017年5月31日的6个月数据进行实验

流量预测的常见做法

流量预测已经研究了数十年,分为两大类:知识驱动方法和数据驱动方法。在交通运输和运筹学中,知识驱动的方法通常采用排队论并模拟交通中的用户行为(Cascetta,2013)。在时间序列社区中,数据驱动方法(例如自回归综合移动平均(ARIMA)模型和卡尔曼滤波)仍然很流行(Liu等人,2011; Lippi等人,2013)

解决思路

我们使用有向图表示交通传感器之间的成对空间关系,该有向图的节点是传感器,边缘权重表示通过路网距离测量的传感器对之间的接近度。我们将交通流的动力学建模为扩散过程,并提出扩散卷积操作以捕获空间依赖性。我们进一步提出了扩散卷积递归神经网络(DCRNN),它集成了扩散卷积,序列到序列的体系结构和调度的采样技术。

方法论

2.1问题表示

image.png

给出一张图和数据,来预测将来图上结点的数据


X表示结点

2.2空间依赖性建模

交通流与扩散过程相关联来对空间依赖性进行建模,该扩散过程明确捕获了交通动力学的随机性质。

将输入进行空间扩撒卷积:最终得到的输入如下
image.png

2.3对时间依赖性进行建模

采用encode-decode架构
image.png

模型表现

用了三种评估方法;
1)平均绝对误差(MAE),
2)平均绝对百分比误差(MAPE)
3)均方根误差(RMSE)


image.png

预测结果的可视化
image.png

把其中模块修改进行测试的结果


把卷积换成DCNN

个人理解

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容