图像DeBlur--去模糊

研究了一下GitHub上面的项目:
https://github.com/jiangsutx/SRN-Deblur
名字为:Scale-recurrent Network for Deep Image Deblurring
人间的论文地址:http://www.xtao.website/projects/srndeblur/srndeblur_cvpr18.pdf
人家的测试结果:

image.png

image.png

image.png

主要网络代码结构:

# encoder
                    conv1_1 = slim.conv2d(inp_all, 32, [5, 5], scope='enc1_1')
                    conv1_2 = ResnetBlock(conv1_1, 32, 5, scope='enc1_2')
                    conv1_3 = ResnetBlock(conv1_2, 32, 5, scope='enc1_3')
                    conv1_4 = ResnetBlock(conv1_3, 32, 5, scope='enc1_4')
                    conv2_1 = slim.conv2d(conv1_4, 64, [5, 5], stride=2, scope='enc2_1')
                    conv2_2 = ResnetBlock(conv2_1, 64, 5, scope='enc2_2')
                    conv2_3 = ResnetBlock(conv2_2, 64, 5, scope='enc2_3')
                    conv2_4 = ResnetBlock(conv2_3, 64, 5, scope='enc2_4')
                    conv3_1 = slim.conv2d(conv2_4, 128, [5, 5], stride=2, scope='enc3_1')
                    conv3_2 = ResnetBlock(conv3_1, 128, 5, scope='enc3_2')
                    conv3_3 = ResnetBlock(conv3_2, 128, 5, scope='enc3_3')
                    conv3_4 = ResnetBlock(conv3_3, 128, 5, scope='enc3_4')

                    if self.args.model == 'lstm':
                        deconv3_4, rnn_state = cell(conv3_4, rnn_state)
                    else:
                        deconv3_4 = conv3_4

                    # decoder
                    deconv3_3 = ResnetBlock(deconv3_4, 128, 5, scope='dec3_3')
                    deconv3_2 = ResnetBlock(deconv3_3, 128, 5, scope='dec3_2')
                    deconv3_1 = ResnetBlock(deconv3_2, 128, 5, scope='dec3_1')
                    deconv2_4 = slim.conv2d_transpose(deconv3_1, 64, [4, 4], stride=2, scope='dec2_4')
                    cat2 = deconv2_4 + conv2_4
                    deconv2_3 = ResnetBlock(cat2, 64, 5, scope='dec2_3')
                    deconv2_2 = ResnetBlock(deconv2_3, 64, 5, scope='dec2_2')
                    deconv2_1 = ResnetBlock(deconv2_2, 64, 5, scope='dec2_1')
                    deconv1_4 = slim.conv2d_transpose(deconv2_1, 32, [4, 4], stride=2, scope='dec1_4')
                    cat1 = deconv1_4 + conv1_4
                    deconv1_3 = ResnetBlock(cat1, 32, 5, scope='dec1_3')
                    deconv1_2 = ResnetBlock(deconv1_3, 32, 5, scope='dec1_2')
                    deconv1_1 = ResnetBlock(deconv1_2, 32, 5, scope='dec1_1')
                    inp_pred = slim.conv2d(deconv1_1, self.chns, [5, 5], activation_fn=None, scope='dec1_0')

可以看出,代码结构还是很清晰的。
然后用我自己的图片测试一下,发现效果并不明显,可能我的图片不是运动模糊的原因吧。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355

推荐阅读更多精彩内容