RNN、LSTM TF源码

RNN

class BasicRNNCell(RNNCell):
  """The most basic RNN cell.
  Args:
    num_units: int, The number of units in the RNN cell.
    activation: Nonlinearity to use.  Default: `tanh`.
    reuse: (optional) Python boolean describing whether to reuse variables
     in an existing scope.  If not `True`, and the existing scope already has
     the given variables, an error is raised.
  """

  def __init__(self, num_units, activation=None, reuse=None):
    super(BasicRNNCell, self).__init__(_reuse=reuse)
    self._num_units = num_units
    self._activation = activation or math_ops.tanh
    self._linear = None

  @property
  def state_size(self):
    return self._num_units

  @property
  def output_size(self):
    return self._num_units

  def call(self, inputs, state):
    """Most basic RNN: output = new_state = act(W * input + U * state + B)."""
    if self._linear is None:
      self._linear = _Linear([inputs, state], self._num_units, True)

    output = self._activation(self._linear([inputs, state]))
    return output, output
  
cell = tf.nn.rnn_cell.BasicRNNCell(num_units=128)
print(cell.state_size)
inputs = tf.placeholder(tf.float32, shape=[32, 100])
h0 = cell.zero_state(32, tf.float32)
output, h1 = cell(inputs=inputs, state=h0)
print(output.shape) #128
print(h1.shape)         #128

#这里我们首先初始化了一个神经元个数为 128 的 BasicRNNCell 类,然后构造了一个 shape 为 [32, 100] 的变量作为 inputs,其代表 batch_size 为 32, 维度为 100,随后初始化了初始隐藏状态,调用了 zero_state() 方法,最终调用了其 call() 方法,最后得到 output 和 h1

LSTM

class BasicRNNCell(RNNCell):
  def __init__(self, num_units, forget_bias=1.0,
                 state_is_tuple=True, activation=None, reuse=None):
      super(BasicLSTMCell, self).__init__(_reuse=reuse)
      if not state_is_tuple:
        logging.warn("%s: Using a concatenated state is slower and will soon be "
                     "deprecated.  Use state_is_tuple=True.", self)
      self._num_units = num_units
      self._forget_bias = forget_bias
      self._state_is_tuple = state_is_tuple
      self._activation = activation or math_ops.tanh
      self._linear = None
      
  @property
  def state_size(self):
      return (LSTMStateTuple(self._num_units, self._num_units)
          if self._state_is_tuple else 2 * self._num_units)

  @property
  def output_size(self):
      return self._num_units
    
  def call(self, inputs, state):
      """Long short-term memory cell (LSTM).

      Args:
        inputs: `2-D` tensor with shape `[batch_size x input_size]`.
        state: An `LSTMStateTuple` of state tensors, each shaped
          `[batch_size x self.state_size]`, if `state_is_tuple` has been set to
          `True`.  Otherwise, a `Tensor` shaped
          `[batch_size x 2 * self.state_size]`.

      Returns:
        A pair containing the new hidden state, and the new state (either a
          `LSTMStateTuple` or a concatenated state, depending on
          `state_is_tuple`).
      """
      sigmoid = math_ops.sigmoid
      # Parameters of gates are concatenated into one multiply for efficiency.
      if self._state_is_tuple:
          c, h = state
      else:
          c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)

      if self._linear is None:
          self._linear = _Linear([inputs, h], 4 * self._num_units, True)
      # i = input_gate, j = new_input, f = forget_gate, o = output_gate
      i, j, f, o = array_ops.split(
          value=self._linear([inputs, h]), num_or_size_splits=4, axis=1)

      new_c = (
          c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
      new_h = self._activation(new_c) * sigmoid(o)

      if self._state_is_tuple:
          new_state = LSTMStateTuple(new_c, new_h)
      else:
          new_state = array_ops.concat([new_c, new_h], 1)
      return new_h, new_state
    
cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=128)
inputs = tf.placeholder(tf.float32, shape=(32, 100))
h0 = cell.zero_state(32, tf.float32)
output, h1 = cell(inputs=inputs, state=h0)

摘自:https://cuiqingcai.com/4925.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容