数学模型——微分方程

通过微分方程,探索与拟合自变量与因变量之间的关系。

大致方法

建立微分方程:
\frac{\Delta P}{\Delta t}=\frac{P(t+\Delta t)-P(t)}{\Delta t}=kP
\Delta t 趋近于零时,由导数的定义得
\lim_{\Delta t->0} \frac{\Delta P}{\Delta t}= \frac{dP}{dt} =kP
然后解方程:
\frac{dP}{P}=kdt
lnP=kt+C \Rightarrow P(t_0)=P_0 \Rightarrow C=lnP_0-kt_0
代入得:
lnP=kt+lnP_0+kt_0
ln \frac{P}{P_0} =k(t-t_0) \Rightarrow P(t)=P_0e^{k(t-t_0)}


模型改进:

k \not= 常数k 是关于 P 的函数, k=r(M-P),r>0 是系数, M 是极限值。

那么得
\frac{dP}{dt}=r(M-P)P \Rightarrow \frac{dP}{P(M-P)}=rdt
\frac{1}{P(M-P)}= \frac{1}{M}(\frac{1}{P}+\frac{1}{M-P}) \Rightarrow \frac{dP}{P}+\frac{dP}{M-P}=rMdt

求积分得 lnP-ln|M-P|=rMt+C ,由 P(t_0)=P_0 得:
C=ln \frac{P_0}{M-P_0}-rMt_0
带入后化简方程得:
ln (\frac{P(M-P_0)}{P_0(M-P)})=rM(t-t_0) \Rightarrow \frac{P(M-P_0)}{P_0(M-P)}=e^{rM(t-t_0)}
得 P(t)=\frac{P_0Me^{rM(t-t_0)}}{M-P_0-P_0e^{rM(t-t_0)}}= \frac{MP_0}{[P_0+(M-P_0)e^{-rM(t-t_0)}]}
故得: \lim_{t \to \infty}P(t)=M
所以现在转换成求 rM
由 \frac{dP}{dt}=r(M-P)P \Rightarrow P''=rMP'-2rPP'=rP'(M-2P)
得:当P=M/2 时,P''=0 ,即在 M/2 处,P' 最大,然后从 M/2M 逐渐减小至零。
所以,可根据此,结合拟合的图像(模拟遍历),推算出 M ,从而在推算出 r 。至此,方程参数已确定完毕。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 本章涉及知识点1、微分方程的定义2、一阶线性微分方程的定义3、求齐次线性方程通解的算法4、求非齐次线性方程通解的算...
    PrivateEye_zzy阅读 39,957评论 1 16
  • 学习高数的时间有点久了,很多概念都生疏了,所以花了一天时间重新翻了一遍高等数学,就写一篇文档总结一下微积分中的关键...
    硬件工程师技术号阅读 2,150评论 0 9
  • 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考...
    Saudade_lh阅读 1,076评论 0 0
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 751评论 0 3
  • 2017年考研数学一大纲原文 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考...
    SheBang_阅读 621评论 0 7