剑指 offer 笔记 08 | 跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

题目分析:
本题可以用递归和迭代来解答,那么就是要找规律了。因为青蛙只有 一次 1 阶或者 2 阶的跳法。

递归法:

1)当台阶为 1 时,只有一种跳法,一步到位。

2)当台阶为 2 时,有两种,一种是分两次跳,每次为 1;第二种,跳一次,一次跳两级;

3)从特殊推测到一般情况,假定第一次跳的是 1 阶,那么剩下的是 n-1 个台阶,跳法是 f(n-1);

4)假设第一次跳的是 2 阶,那么剩下的是 n-2 个台阶,跳法是 f(n-2);

5)由 3)和 4)假设可以得出总跳法为: f(n) = f(n-1) + f(n-2) ;

6)最终得出的是一个斐波那契数列:
| 1, (n=1)
f(n) = | 2, (n=2)
| f(n-1)+f(n-2) ,(n>2,n为整数)

额外补充:
直接找规律,f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5, 可以总结出f(n) = f(n-1) + f(n-2)的规律;

假设现在 6 个台阶,我们可以从第 5 跳一步到 6,这样的话有多少种方案跳到 5 就有多少种方案跳到 6;

另外我们也可以从 4 跳两步跳到 6,跳到 4 有多少种方案的话,就有多少种方案跳到 6,其他的不能从 3 跳到 6 什么的啦;

所以最后就是 f(6) = f(5) + f(4);这样子也很好理解变态跳台阶的问题了。

public class Solution {
    public int JumpFloor(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else if (target ==2) {
            return 2;
        } else {
            return  JumpFloor(target-1)+JumpFloor(target-2);
        }
    }
}

迭代法:

public class Solution {
    public int JumpFloor(int target) {
        if(target <= 0) {
            return 0;
        }else if(target == 1) {
            return 1;
        }else  if(target == 2)  {
            return 2;
        }
        int one = 1;
        int two = 2;
        int result = 0;
        for(int i = 2; i < target; i++) {
            result = one+ two;
            one = two;
            two = result;
        }
        return result;
    }
}

参考文献:https://www.nowcoder.com/profile/214250/codeBookDetail?submissionId=1520111

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容