pix2pix主要代码学习

参考:

https://affinelayer.com/pix2pix/
https://github.com/phillipi/pix2pix

无supervisor情况下tensorflow训练过程如下:

variables
...
ops
...
summary_op
...
merge_all_summarie
saver
init_op

with tf.Session() as sess:
  writer = tf.tf.train.SummaryWriter()
  sess.run(init)
  saver.restore()
  for ...:
    train
    merged_summary = sess.run(merge_all_summarie)
    writer.add_summary(merged_summary,i)
  saver.save

参数

parser = argparse.ArgumentParser()
parser.add_argument("--mode", required=True, choices=["train", "test", "export"])
parser.add_argument("--separable_conv", action="store_true", help="use separable convolutions in the generator")
parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first conv layer")
a = parser.parse_args()

type、default、required、help、action("store_true"表示存储为True)

lab空间: L分量用于表示像素的亮度,取值范围是[0,100],表示从纯黑到纯白;a表示从红色到绿色的范围,取值范围是[127,-128];b表示从黄色到蓝色的范围,取值范围是[127,-128]。

Discriminator卷积层

def discrim_conv(batch_input, out_channels, stride):
    padded_input = tf.pad(batch_input, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT")
    return tf.layers.conv2d(padded_input, out_channels, kernel_size=4, strides=(stride, stride), padding="valid", kernel_initializer=tf.random_normal_initializer(0, 0.02))

pad四个数组分别表示input的四个维度:[batch, in_height, in_width, in_channels],tf.random_normal_initializer(m, d)正态随机,m均值,d标准差。

Generator卷积层

def gen_conv(batch_input, out_channels):
    # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels]
    initializer = tf.random_normal_initializer(0, 0.02)
    if a.separable_conv:
        return tf.layers.separable_conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer)
    else:
        return tf.layers.conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer)

same padding之后宽高变为height/stride。
separable_conv2d可参考:

http://blog.csdn.net/mao_xiao_feng/article/details/78002811

但depthwise_initializer以后depthwise filter的个数是多少还不清楚。

Generator反卷积层

def gen_deconv(batch_input, out_channels):
    # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels]
    initializer = tf.random_normal_initializer(0, 0.02)
    if a.separable_conv:
        _b, h, w, _c = batch_input.shape
        resized_input = tf.image.resize_images(batch_input, [h * 2, w * 2], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        return tf.layers.separable_conv2d(resized_input, out_channels, kernel_size=4, strides=(1, 1), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer)
    else:
        return tf.layers.conv2d_transpose(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer)

leaky ReLU

def lrelu(x, a):
    with tf.name_scope("lrelu"):
        # adding these together creates the leak part and linear part
        # then cancels them out by subtracting/adding an absolute value term
        # leak: a*x/2 - a*abs(x)/2
        # linear: x/2 + abs(x)/2

        # this block looks like it has 2 inputs on the graph unless we do this
        x = tf.identity(x)
        return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x)

identity的作用还不清楚。

Batch Normalization

def batchnorm(inputs):
    return tf.layers.batch_normalization(inputs, axis=3, epsilon=1e-5, momentum=0.1, training=True, gamma_initializer=tf.random_normal_initializer(1.0, 0.02))

其中momentum指训练时通过moving average:

计算训练集的均值和方差。

Batch normalization:

关于axis的理解可以参考:

https://www.jianshu.com/p/0312e04e4e83

载入图像

Examples = collections.namedtuple("Examples", "paths, inputs, targets, count, steps_per_epoch")
def load_examples():
    ...
    with tf.name_scope("load_images"):
        path_queue = tf.train.string_input_producer(input_paths, shuffle=a.mode == "train")
        reader = tf.WholeFileReader()
        decode = tf.image.decode_jpeg
        paths, contents = reader.read(path_queue)
        raw_input = decode(contents)
        raw_input = tf.image.convert_image_dtype(raw_input, dtype=tf.float32)

        assertion = tf.assert_equal(tf.shape(raw_input)[2], 3, message="image does not have 3 channels")
        with tf.control_dependencies([assertion]):
        # 先执行control_dependencies内的操作。
            raw_input = tf.identity(raw_input)
    ...
    paths_batch, inputs_batch, targets_batch = tf.train.batch([paths, input_images, target_images], batch_size=a.batch_size)
    steps_per_epoch = int(math.ceil(len(input_paths) / a.batch_size))

    return Examples(
        paths=paths_batch,
        inputs=inputs_batch,
        targets=targets_batch,
        count=len(input_paths),
        steps_per_epoch=steps_per_epoch,
    )

整个过程的解释可以参考:

http://blog.csdn.net/zzk1995/article/details/54292859

  1. 使用tf.train.string_input_producer函数把我们需要的全部文件打包为一个tf内部的queue类型,之后tf开文件就从这个queue中取目录了。
  2. 搞一个reader,不同reader对应不同的文件结构。
  3. 用reader的read方法,这个方法需要一个IO类型的参数,就是我们上边string_input_producer输出的那个queue了,reader从这个queue中取一个文件目录,然后打开它进行一次读取。
  4. 我们就要用tf.train.batch或者tf.train.shuffle_batch这个函数把一个一个小样本的tensor打包成一个高一维度的样本batch,这些函数的输入是单个样本,输出就是4D的样本batch了,其内部原理似乎是创建了一个queue,然后不断调用你的单样本tensor获得样本,直到queue里边有足够的样本,然后一次返回一堆样本,组成样本batch。

以上是常用的标准流程。

Generator

def create_generator(generator_inputs, generator_outputs_channels):
    layers = []

    # encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
    with tf.variable_scope("encoder_1"):
        output = gen_conv(generator_inputs, a.ngf)
        # ngf: number of generator filters
        layers.append(output)

    layer_specs = [
        a.ngf * 2, # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
        a.ngf * 4, # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
        a.ngf * 8, # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
        a.ngf * 8, # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
        a.ngf * 8, # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
        a.ngf * 8, # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
        a.ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8]
    ]

    for out_channels in layer_specs:
        with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
            rectified = lrelu(layers[-1], 0.2)
            # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
            convolved = gen_conv(rectified, out_channels)
            output = batchnorm(convolved)
            layers.append(output)

    layer_specs = [
        (a.ngf * 8, 0.5),   # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
        (a.ngf * 8, 0.5),   # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
        (a.ngf * 8, 0.5),   # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2]
        (a.ngf * 8, 0.0),   # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2]
        (a.ngf * 4, 0.0),   # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2]
        (a.ngf * 2, 0.0),   # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2]
        (a.ngf, 0.0),       # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2]
    ]

    num_encoder_layers = len(layers)
    for decoder_layer, (out_channels, dropout) in enumerate(layer_specs):
        skip_layer = num_encoder_layers - decoder_layer - 1
        with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
            if decoder_layer == 0:
                # first decoder layer doesn't have skip connections
                # since it is directly connected to the skip_layer
                input = layers[-1]
            else:
                input = tf.concat([layers[-1], layers[skip_layer]], axis=3)

            rectified = tf.nn.relu(input)
            # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
            output = gen_deconv(rectified, out_channels)
            output = batchnorm(output)

            if dropout > 0.0:
                output = tf.nn.dropout(output, keep_prob=1 - dropout)

            layers.append(output)

    # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
    with tf.variable_scope("decoder_1"):
        input = tf.concat([layers[-1], layers[0]], axis=3)
        rectified = tf.nn.relu(input)
        output = gen_deconv(rectified, generator_outputs_channels)
        output = tf.tanh(output)
        layers.append(output)

    return layers[-1]

Discriminator

def create_discriminator(discrim_inputs, discrim_targets):
    n_layers = 3
    layers = []

    # 2x [batch, height, width, in_channels] => [batch, height, width, in_channels * 2]
    input = tf.concat([discrim_inputs, discrim_targets], axis=3)

    # layer_1: [batch, 256, 256, in_channels * 2] => [batch, 128, 128, ndf]
    with tf.variable_scope("layer_1"):
        convolved = discrim_conv(input, a.ndf, stride=2)
        rectified = lrelu(convolved, 0.2)
        layers.append(rectified)

    # layer_2: [batch, 128, 128, ndf] => [batch, 64, 64, ndf * 2]
    # layer_3: [batch, 64, 64, ndf * 2] => [batch, 32, 32, ndf * 4]
    # layer_4: [batch, 32, 32, ndf * 4] => [batch, 31, 31, ndf * 8]
    for i in range(n_layers):
        with tf.variable_scope("layer_%d" % (len(layers) + 1)):
            out_channels = a.ndf * min(2 ** (i + 1), 8)
            stride = 1 if i == n_layers - 1 else 2  # last layer here has stride 1
            convolved = discrim_conv(layers[-1], out_channels, stride=stride)
            normalized = batchnorm(convolved)
            rectified = lrelu(normalized, 0.2)
            layers.append(rectified)

    # layer_5: [batch, 31, 31, ndf * 8] => [batch, 30, 30, 1]
    with tf.variable_scope("layer_%d" % (len(layers) + 1)):
        convolved = discrim_conv(rectified, out_channels=1, stride=1)
        output = tf.sigmoid(convolved)
        layers.append(output)

    return layers[-1]

Model

Model = collections.namedtuple("Model", "outputs, predict_real, predict_fake, discrim_loss, discrim_grads_and_vars, gen_loss_GAN, gen_loss_L1, gen_grads_and_vars, train")
def create_model(inputs, targets):
    with tf.variable_scope("generator"):
        out_channels = int(targets.get_shape()[-1])
        outputs = create_generator(inputs, out_channels)

    # create two copies of discriminator, one for real pairs and one for fake pairs
    # they share the same underlying variables
    with tf.name_scope("real_discriminator"):
        with tf.variable_scope("discriminator"):
            # 2x [batch, height, width, channels] => [batch, 30, 30, 1]
            predict_real = create_discriminator(inputs, targets)

    with tf.name_scope("fake_discriminator"):
        with tf.variable_scope("discriminator", reuse=True):
            # 2x [batch, height, width, channels] => [batch, 30, 30, 1]
            predict_fake = create_discriminator(inputs, outputs)

    with tf.name_scope("discriminator_loss"):
        # minimizing -tf.log will try to get inputs to 1
        # predict_real => 1
        # predict_fake => 0
        discrim_loss = tf.reduce_mean(-(tf.log(predict_real + EPS) + tf.log(1 - predict_fake + EPS)))

    with tf.name_scope("generator_loss"):
        # predict_fake => 1
        # abs(targets - outputs) => 0
        gen_loss_GAN = tf.reduce_mean(-tf.log(predict_fake + EPS))
        gen_loss_L1 = tf.reduce_mean(tf.abs(targets - outputs))
        gen_loss = gen_loss_GAN * a.gan_weight + gen_loss_L1 * a.l1_weight

    with tf.name_scope("discriminator_train"):
        discrim_tvars = [var for var in tf.trainable_variables() if var.name.startswith("discriminator")]
        discrim_optim = tf.train.AdamOptimizer(a.lr, a.beta1)
        discrim_grads_and_vars = discrim_optim.compute_gradients(discrim_loss, var_list=discrim_tvars)
        discrim_train = discrim_optim.apply_gradients(discrim_grads_and_vars)

    with tf.name_scope("generator_train"):
        with tf.control_dependencies([discrim_train]):
            gen_tvars = [var for var in tf.trainable_variables() if var.name.startswith("generator")]
            gen_optim = tf.train.AdamOptimizer(a.lr, a.beta1)
            gen_grads_and_vars = gen_optim.compute_gradients(gen_loss, var_list=gen_tvars)
            gen_train = gen_optim.apply_gradients(gen_grads_and_vars)

    ema = tf.train.ExponentialMovingAverage(decay=0.99)
    update_losses = ema.apply([discrim_loss, gen_loss_GAN, gen_loss_L1])

    global_step = tf.train.get_or_create_global_step()
    incr_global_step = tf.assign(global_step, global_step+1)

    return Model(
        predict_real=predict_real,
        predict_fake=predict_fake,
        discrim_loss=ema.average(discrim_loss),
        discrim_grads_and_vars=discrim_grads_and_vars,
        gen_loss_GAN=ema.average(gen_loss_GAN),
        gen_loss_L1=ema.average(gen_loss_L1),
        gen_grads_and_vars=gen_grads_and_vars,
        outputs=outputs,
        train=tf.group(update_losses, incr_global_step, gen_train),
    )

AdamOptimizer:



ExponentialMovingAverage:

http://blog.csdn.net/u012436149/article/details/56484572

Variables & Ops

def main():    
    if a.seed is None:
        a.seed = random.randint(0, 2**31 - 1)

    tf.set_random_seed(a.seed)
    np.random.seed(a.seed)
    random.seed(a.seed)

    if not os.path.exists(a.output_dir):
        os.makedirs(a.output_dir)
    examples = load_examples()
    print("examples count = %d" % examples.count)

    # inputs and targets are [batch_size, height, width, channels]
    model = create_model(examples.inputs, examples.targets)
    inputs = deprocess(examples.inputs)
    targets = deprocess(examples.targets)
    outputs = deprocess(model.outputs)
    def convert(image):
        if a.aspect_ratio != 1.0:
            # upscale to correct aspect ratio
            size = [CROP_SIZE, int(round(CROP_SIZE * a.aspect_ratio))]
            image = tf.image.resize_images(image, size=size, method=tf.image.ResizeMethod.BICUBIC)

        return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True)

    # reverse any processing on images so they can be written to disk or displayed to user
    with tf.name_scope("convert_inputs"):
        converted_inputs = convert(inputs)

    with tf.name_scope("convert_targets"):
        converted_targets = convert(targets)

    with tf.name_scope("convert_outputs"):
        converted_outputs = convert(outputs)

    with tf.name_scope("encode_images"):
        display_fetches = {
            "paths": examples.paths,
            "inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, name="input_pngs"),
            "targets": tf.map_fn(tf.image.encode_png, converted_targets, dtype=tf.string, name="target_pngs"),
            "outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, name="output_pngs"),
        }

Summaries

    with tf.name_scope("inputs_summary"):
        tf.summary.image("inputs", converted_inputs)

    with tf.name_scope("targets_summary"):
        tf.summary.image("targets", converted_targets)

    with tf.name_scope("outputs_summary"):
        tf.summary.image("outputs", converted_outputs)

    with tf.name_scope("predict_real_summary"):
        tf.summary.image("predict_real", tf.image.convert_image_dtype(model.predict_real, dtype=tf.uint8))

    with tf.name_scope("predict_fake_summary"):
        tf.summary.image("predict_fake", tf.image.convert_image_dtype(model.predict_fake, dtype=tf.uint8))

    tf.summary.scalar("discriminator_loss", model.discrim_loss)
    tf.summary.scalar("generator_loss_GAN", model.gen_loss_GAN)
    tf.summary.scalar("generator_loss_L1", model.gen_loss_L1)

    for var in tf.trainable_variables():
        tf.summary.histogram(var.op.name + "/values", var)

    for grad, var in model.discrim_grads_and_vars + model.gen_grads_and_vars:
        tf.summary.histogram(var.op.name + "/gradients", grad)

Session

    with tf.name_scope("parameter_count"):
        parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()])

    saver = tf.train.Saver(max_to_keep=1)

    logdir = a.output_dir if (a.trace_freq > 0 or a.summary_freq > 0) else None
    sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=0, saver=None)
    with sv.managed_session() as sess:
        print("parameter_count =", sess.run(parameter_count))

        if a.checkpoint is not None:
            print("loading model from checkpoint")
            checkpoint = tf.train.latest_checkpoint(a.checkpoint)
            saver.restore(sess, checkpoint)

        max_steps = 2**32
        if a.max_epochs is not None:
            max_steps = examples.steps_per_epoch * a.max_epochs
        if a.max_steps is not None:
            max_steps = a.max_steps

        if a.mode == "test":
            # testing
            # at most, process the test data once
            start = time.time()
            max_steps = min(examples.steps_per_epoch, max_steps)
            for step in range(max_steps):
                results = sess.run(display_fetches)
                filesets = save_images(results)
                for i, f in enumerate(filesets):
                    print("evaluated image", f["name"])
                index_path = append_index(filesets)
            print("wrote index at", index_path)
            print("rate", (time.time() - start) / max_steps)
        else:
            # training
            start = time.time()

            for step in range(max_steps):
                def should(freq):
                    return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1)

                options = None
                run_metadata = None
                if should(a.trace_freq):
                    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()

                fetches = {
                    "train": model.train,
                    "global_step": sv.global_step,
                }

                if should(a.progress_freq):
                    fetches["discrim_loss"] = model.discrim_loss
                    fetches["gen_loss_GAN"] = model.gen_loss_GAN
                    fetches["gen_loss_L1"] = model.gen_loss_L1

                if should(a.summary_freq):
                    fetches["summary"] = sv.summary_op

                if should(a.display_freq):
                    fetches["display"] = display_fetches

                results = sess.run(fetches, options=options, run_metadata=run_metadata)

                if should(a.summary_freq):
                    print("recording summary")
                    sv.summary_writer.add_summary(results["summary"], results["global_step"])

                if should(a.display_freq):
                    print("saving display images")
                    filesets = save_images(results["display"], step=results["global_step"])
                    append_index(filesets, step=True)

                if should(a.trace_freq):
                    print("recording trace")
                    sv.summary_writer.add_run_metadata(run_metadata, "step_%d" % results["global_step"])

                if should(a.progress_freq):
                    # global_step will have the correct step count if we resume from a checkpoint
                    train_epoch = math.ceil(results["global_step"] / examples.steps_per_epoch)
                    train_step = (results["global_step"] - 1) % examples.steps_per_epoch + 1
                    rate = (step + 1) * a.batch_size / (time.time() - start)
                    remaining = (max_steps - step) * a.batch_size / rate
                    print("progress  epoch %d  step %d  image/sec %0.1f  remaining %dm" % (train_epoch, train_step, rate, remaining / 60))
                    print("discrim_loss", results["discrim_loss"])
                    print("gen_loss_GAN", results["gen_loss_GAN"])
                    print("gen_loss_L1", results["gen_loss_L1"])

                if should(a.save_freq):
                    print("saving model")
                    saver.save(sess, os.path.join(a.output_dir, "model"), global_step=sv.global_step)

                if sv.should_stop():
                    break

结果


还算不错,但仍没有文章里那么清晰。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351