机器学习 人工神经网络

姓名 郭宇

学号 16130130299

转载自【机器学习:人工神经网络ANN】

https://m.toutiao.com/group/6490319757177258510/?iid=17602826099&app=news_article&tt_from=android_share&utm_medium=toutiao_android&utm_campaign=client_share

【嵌牛导读】:机器学习

【嵌牛鼻子】 感知机模型   激活函数

【嵌牛提问】感知机模型是什么  激活函数又是什么?

【嵌牛正文】:会技术的葛大爷2017-11-20 10:35:27

神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用。人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发、硬件计算能力暴增、深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以深度学习为首的人工神经网络,又一次走入人们的视野。

感知机模型perception

不再处理离散情况,而是连续的数值,学习时权值在变化,从而记忆存储学到的知识

神经元输入:类似于线性回归z =w1x1+w2x2 +⋯ +wnxn= wT・x(linear threshold unit (LTU))

神经元输出:激活函数,类似于二值分类,模拟了生物学中神经元只有激发和抑制两种状态。

增加篇值,输出层哪个节点权重大,输出哪一个。

采用Hebb准则,下一个权重调整方法参考当前权重和训练效果

#一个感知机的例子

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import Perceptron

iris = load_iris()

X = iris.data[:, (2, 3)] # petal length, petal width

y = (iris.target == 0).astype(np.int) # Iris Setosa?

per_clf = Perceptron(random_state=42)

per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]]

之后有人提出,perception无法处理异或问题,但是,使用多层感知机(MLP)可以处理这个问题

def heaviside(z):

return (z >= 0).astype(z.dtype)

def sigmoid(z):

return 1/(1+np.exp(-z))

#做了多层activation,手工配置权重

def mlp_xor(x1, x2, activation=heaviside):

return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

如图所示,两层MLP,包含输入层,隐层,输出层。所谓的深度神经网络,就是隐层数量多一些。

激活函数

以下是几个激活函数的例子,其微分如右图所示

step是最早提出的一种激活函数,但是它在除0外所有点的微分都是0,没有办法计算梯度

logit和双曲正切函数tanh梯度消失,数据量很大时,梯度无限趋近于0,

relu在层次很深时梯度也不为0,无限传导下去。

如何自动化学习计算权重——backpropagation

首先正向做一个计算,根据当前输出做一个error计算,作为指导信号反向调整前一层输出权重使其落入一个合理区间,反复这样调整到第一层,每轮调整都有一个学习率,调整结束后,网络越来越合理。

step函数换成逻辑回归函数σ(z) = 1 / (1 + exp(–z)),无论x落在哪个区域,最后都有一个非0的梯度可以使用,落在(0,1)区间。

双曲正切函数The hyperbolic tangent function tanh (z) = 2σ(2z) – 1,在(-1,1)的区间。

The ReLU function ReLU (z) = max (0, z),层次很深时不会越传递越小。

多分类时,使用softmax(logistics激活函数)最为常见。

使用MLP多分类输出层为softmax,隐层倾向于使用ReLU,因为向前传递时不会有数值越来越小得不到训练的情况产生。

以mnist数据集为例

import tensorflow as tf

# construction phase

n_inputs = 28*28 # MNIST

# 隐藏层节点数目

n_hidden1 = 300

n_hidden2 = 100

n_outputs = 10

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")

y = tf.placeholder(tf.int64, shape=(None), name="y")

def neuron_layer(X, n_neurons, name, activation=None):

with tf.name_scope(name):

n_inputs = int(X.get_shape()[1])

# 标准差初始设定,研究证明设为以下结果训练更快

stddev = 2 / np.sqrt(n_inputs)

# 使用截断的正态分布,过滤掉极端的数据,做了一个初始权重矩阵,是input和neurons的全连接矩阵

init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)

W = tf.Variable(init, name="weights")

# biases项初始化为0

b = tf.Variable(tf.zeros([n_neurons]), name="biases")

# 该层输出

z = tf.matmul(X, W) + b

# 根据activation选择激活函数

if activation=="relu":

return tf.nn.relu(z)

else:

return z

with tf.name_scope("dnn"):

# 算上输入层一共4层的dnn结构

hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")

hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")

# 直接输出最后结果值

logits = neuron_layer(hidden2, n_outputs, "outputs")

# 使用TensorFlow自带函数实现,最新修改成dense函数

from tensorflow.contrib.layers import fully_connected

with tf.name_scope("dnn"):

hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

logits = fully_connected(hidden2, n_outputs, scope="outputs", activation_fn=None)

# 使用logits(网络输出)计算交叉熵,取均值为误差

with tf.name_scope("loss"):

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

loss = tf.reduce_mean(xentropy, name="loss")

learning_rate = 0.01

with tf.name_scope("train"):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

# Execution Phase

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/")

# 外层大循环跑400次,每个循环中小循环数据量50

n_epochs = 400

batch_size = 50

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

for iteration in range(mnist.train.num_examples // batch_size):

X_batch, y_batch = mnist.train.next_batch(batch_size)

sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})

acc_test = accuracy.eval(feed_dict={X: mnist.test.images,y: mnist.test.labels})

print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

# 下次再跑模型时不用再次训练了

save_path = saver.save(sess, "./my_model_final.ckpt")

# 下次调用

with tf.Session() as sess:

saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path

X_new_scaled = mnist.test.images[:20]

Z = logits.eval(feed_dict={X: X_new_scaled})

y_pred = np.argmax(Z, axis=1)

超参数设置

隐层数量:一般来说单个隐层即可,对于复杂问题,由于深层模型可以实现浅层的指数级别的效果,且每层节点数不多,加至overfit就不要再加了。

每层神经元数量:以漏斗形逐层递减,输入层最多,逐渐features更少代表性更强。

激活函数选择(activation function):隐层多选择ReLU,输出层多选择softmax

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容