Java之JVM配置参考2

refer: https://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

#GC性能方面的考虑

对于GC的性能主要有2个方面的指标:吞吐量throughput(工作时间不算gc的时间占总的时间比)和暂停pause(gc发生时app对外显示的无法响应)。

#1. Total Heap

默认情况下,vm会增加/减少heap大小以维持free space在整个vm中占的比例,这个比例由MinHeapFreeRatio和MaxHeapFreeRatio指定。

一般而言,server端的app会有以下规则:
A.对vm分配尽可能多的memory;
B.将Xms和Xmx设为一样的值。如果虚拟机启动时设置使用的内存比较小,这个时候又需要初始化很多对象,虚拟机就必须重复地增加内存。
C.处理器核数增加,内存也跟着增大。

#2. The Young Generation

另外一个对于app流畅性运行影响的因素是young generation的大小。young generation越大,minor collection越少;但是在固定heap size情况下,更大的young generation就意味着小的tenured generation,就意味着更多的major collection(major collection会引发minor collection)。

NewRatio反映的是young和tenured generation的大小比例。NewSize和MaxNewSize反映的是young generation大小的下限和上限,将这两个值设为一样就固定了young generation的大小(同Xms和Xmx设为一样)。

如果希望,SurvivorRatio也可以优化survivor的大小,不过这对于性能的影响不是很大。SurvivorRatio是eden和survior大小比例。

一般而言,server端的app会有以下规则:
A.首先决定能分配给vm的最大的heap size,然后设定最佳的young generation的大小;
B.如果heap size固定后,增加young generation的大小意味着减小tenured generation大小。让tenured generation在任何时候够大,能够容纳所有live的data(留10%-20%的空余)。

#JVM调优经验参考

#年轻代大小选择

响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择).在此种情况下,年轻代收集发生的频率也是最小的.同时,减少到达年老代的对象.

吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度.因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用.

避免设置过小.当新生代设置过小时会导致:1.YGC次数更加频繁 2.可能导致YGC对象直接进入旧生代,如果此时旧生代满了,会触发FGC.

#年老代大小选择

响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数.如果堆设置小了,可以会造成内存碎 片,高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间.最优化的方案,一般需要参考以下数据获得:

并发垃圾收集信息、持久代并发收集次数、传统GC信息、花在年轻代和年老代回收上的时间比例。

吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代.原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象.

较小堆引起的碎片问题

因为年老代的并发收集器使用标记,清除算法,所以不会对堆进行压缩.当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象.但是,当堆空间较小时,运行一段时间以后,就会出现"碎片",如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记,清除方式进行回收.如果出现"碎片",可能需要进行如下配置:

-XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩.
-XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

用64位操作系统,Linux下64位的jdk比32位jdk要慢一些,但是吃得内存更多,吞吐量更大

XMX和XMS设置一样大,MaxPermSize和MinPermSize设置一样大,这样可以减轻伸缩堆大小带来的压力

使用CMS的好处是用尽量少的新生代,经验值是128M-256M, 然后老生代利用CMS并行收集, 这样能保证系统低延迟的吞吐效率。 实际上cms的收集停顿时间非常的短,2G的内存, 大约20-80ms的应用程序停顿时间

系统停顿的时候可能是GC的问题也可能是程序的问题,多用jmap和jstack查看,或者killall -3 java,然后查看java控制台日志,能看出很多问题。(相关工具的使用方法将在后面的blog中介绍)

仔细了解自己的应用,如果用了缓存,那么年老代应该大一些,缓存的HashMap不应该无限制长,建议采用LRU算法的Map做缓存,LRUMap的最大长度也要根据实际情况设定。

采用并发回收时,年轻代小一点,年老代要大,因为年老大用的是并发回收,即使时间长点也不会影响其他程序继续运行,网站不会停顿

JVM参数的设置(特别是 –Xmx –Xms –Xmn -XX:SurvivorRatio  -XX:MaxTenuringThreshold等参数的设置没有一个固定的公式,需要根据PV old区实际数据 YGC次数等多方面来衡量。为了避免promotion faild可能会导致xmn设置偏小,也意味着YGC的次数会增多,处理并发访问的能力下降等问题。每个参数的调整都需要经过详细的性能测试,才能找到特定应用的最佳配置。

promotion failed:

垃圾回收时promotion failed是个很头痛的问题,一般可能是两种原因产生,第一个原因是救助空间不够,救助空间里的对象还不应该被移动到年老代,但年轻代又有很多对象需要放入救助空间;第二个原因是年老代没有足够的空间接纳来自年轻代的对象;这两种情况都会转向Full GC,网站停顿时间较长。

#解决方方案一:

第一个原因我的最终解决办法是去掉救助空间,设置-XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0即可,第二个原因我的解决办法是设置CMSInitiatingOccupancyFraction为某个值(假设70),这样年老代空间到70%时就开始执行CMS,年老代有足够的空间接纳来自年轻代的对象。

#解决方案一的改进方案:

又有改进了,上面方法不太好,因为没有用到救助空间,所以年老代容易满,CMS执行会比较频繁。我改善了一下,还是用救助空间,但是把救助空间加大,这样也不会有promotion failed。具体操作上,32位Linux和64位Linux好像不一样,64位系统似乎只要配置MaxTenuringThreshold参数,CMS还是有暂停。为了解决暂停问题和promotion failed问题,最后我设置-XX:SurvivorRatio=1 ,并把MaxTenuringThreshold去掉,这样即没有暂停又不会有promotoin failed,而且更重要的是,年老代和永久代上升非常慢(因为好多对象到不了年老代就被回收了),所以CMS执行频率非常低,好几个小时才执行一次,这样,服务器都不用重启了。

-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log

#

CMSInitiatingOccupancyFraction值与Xmn的关系公式

上面介绍了promontion faild产生的原因是EDEN空间不足的情况下将EDEN与From survivor中的存活对象存入To survivor区时,To survivor区的空间不足,再次晋升到old gen区,而old gen区内存也不够的情况下产生了promontion faild从而导致full gc.那可以推断出:eden+from survivor < old gen区剩余内存时,不会出现promontion faild的情况,即:

(Xmx-Xmn)*(1-CMSInitiatingOccupancyFraction/100)>=(Xmn-Xmn/(SurvivorRatior+2))  进而推断出:

CMSInitiatingOccupancyFraction <=((Xmx-Xmn)-(Xmn-Xmn/(SurvivorRatior+2)))/(Xmx-Xmn)*100

例如:

当xmx=128 xmn=36 SurvivorRatior=1时 CMSInitiatingOccupancyFraction<=((128.0-36)-(36-36/(1+2)))/(128-36)*100 =73.913

当xmx=128 xmn=24 SurvivorRatior=1时 CMSInitiatingOccupancyFraction<=((128.0-24)-(24-24/(1+2)))/(128-24)*100=84.615…

当xmx=3000 xmn=600 SurvivorRatior=1时  CMSInitiatingOccupancyFraction<=((3000.0-600)-(600-600/(1+2)))/(3000-600)*100=83.33

CMSInitiatingOccupancyFraction低于70% 需要调整xmn或SurvivorRatior值。

令:

推断公式参考:(Xmx-Xmn)*(100-CMSInitiatingOccupancyFraction)/100>=Xmn 这个公式个人认为不是很严谨,在内存小的时候会影响xmn的计算。

#JVM之GC参考

关于实际环境的GC参数配置见: 实例分析监测工具见JVM监测

#参考:JAVA HOTSPOT VM(http://www.helloying.com/blog/archives/164

#

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容