「性能提升」扩展 Spring Cache 支持多级缓存

为什么多级缓存

缓存的引入是现在大部分系统所必须考虑的

  • redis 作为常用中间件,虽然我们一般业务系统(毕竟业务量有限)不会遇到如下图 在随着 data-size 的增大和数据结构的复杂的造成性能下降,但网络 IO 消耗会成为整个调用链路中不可忽视的部分。尤其在 微服务架构中,一次调用往往会涉及多次调用 例如pig oauth2.0 的 client 认证
  • Caffeine 来自未来的本地内存缓存,性能比如常见的内存缓存实现性能高出不少详细对比

综合所述:我们需要构建 L1 Caffeine JVM 级别缓存 , L2 Redis 缓存。

设计难点

目前大部分应用缓存都是基于 Spring Cache 实现,基于注解(annotation)的缓存(cache)技术,存在的问题如下:

  • Spring Cache 仅支持 单一的缓存来源,即:只能选择 Redis 实现或者 Caffeine 实现,并不能同时使用。
  • 数据一致性:各层缓存之间的数据一致性问题,如应用层缓存和分布式缓存之前的数据一致性问题。
  • 缓存过期:Spring Cache 不支持主动的过期策略

业务流程

如何使用

    1. 引入依赖
<dependency>
    <groupId>com.pig4cloud.plugin</groupId>
    <artifactId>multilevel-cache-spring-boot-starter</artifactId>
    <version>0.0.1</version>
</dependency>
    1. 开启缓存支持
@EnableCaching
public class App {
    public static void main(String[] args) {
        SpringApplication.run(App.class, args);
    }
}
    1. 目标接口声明 Spring Cache 注解
@Cacheable(value = "get",key = "#key")
@GetMapping("/get")
public String get(String key){
    return "success";
}

性能比较

为保证性能 redis 在 127.0.0.1 环路安装

  • OS: macOS Mojave
  • CPU: 2.3 GHz Intel Core i5
  • RAM: 8 GB 2133 MHz LPDDR3
  • JVM: corretto_11.jdk
Benchmark Mode Cnt Score Units
多级实现 thrpt 2 2716.074 ops/s
默认 redis thrpt 2 1373.476 ops/s

代码原理

    1. 自定义 CacheManager 多级缓存实现
public class RedisCaffeineCacheManager implements CacheManager {

    @Override
    public Cache getCache(String name) {
        Cache cache = cacheMap.get(name);
        if (cache != null) {
            return cache;
        }
        cache = new RedisCaffeineCache(name, stringKeyRedisTemplate, caffeineCache(), cacheConfigProperties);
        Cache oldCache = cacheMap.putIfAbsent(name, cache);
        log.debug("create cache instance, the cache name is : {}", name);
        return oldCache == null ? cache : oldCache;
    }
}
    1. 多级读取、过期策略实现
public class RedisCaffeineCache extends AbstractValueAdaptingCache {
    protected Object lookup(Object key) {
        Object cacheKey = getKey(key);

    // 1. 先调用 caffeine 查询是否存在指定的值
        Object value = caffeineCache.getIfPresent(key);
        if (value != null) {
            log.debug("get cache from caffeine, the key is : {}", cacheKey);
            return value;
        }

    // 2. 调用 redis 查询在指定的值
        value = stringKeyRedisTemplate.opsForValue().get(cacheKey);

        if (value != null) {
            log.debug("get cache from redis and put in caffeine, the key is : {}", cacheKey);
            caffeineCache.put(key, value);
        }
        return value;
    }
}
    1. 过期策略,所有更新操作都基于 redis pub/sub 消息机制更新
public class RedisCaffeineCache extends AbstractValueAdaptingCache {
    @Override
    public void put(Object key, Object value) {
        push(new CacheMessage(this.name, key));
    }

    @Override
    public ValueWrapper putIfAbsent(Object key, Object value) {
                push(new CacheMessage(this.name, key));
    }

    @Override
    public void evict(Object key) {
        push(new CacheMessage(this.name, key));
    }

    @Override
    public void clear() {
        push(new CacheMessage(this.name, null));
    }

    private void push(CacheMessage message) {
        stringKeyRedisTemplate.convertAndSend(topic, message);
    }
}
    1. MessageListener 删除指定 Caffeine 的指定值
public class CacheMessageListener implements MessageListener {

    private final RedisTemplate<Object, Object> redisTemplate;

    private final RedisCaffeineCacheManager redisCaffeineCacheManager;

    @Override
    public void onMessage(Message message, byte[] pattern) {
        CacheMessage cacheMessage = (CacheMessage) redisTemplate.getValueSerializer().deserialize(message.getBody());
                cacheMessage.getCacheName(), cacheMessage.getKey());
        redisCaffeineCacheManager.clearLocal(cacheMessage.getCacheName(), cacheMessage.getKey());
    }
}

源码地址

https://github.com/pig-mesh/multilevel-cache-spring-boot-starter

https://gitee.com/log4j/pig

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,321评论 6 543
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,559评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,442评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,835评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,581评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,922评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,931评论 3 447
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,096评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,639评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,374评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,591评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,104评论 5 364
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,789评论 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,196评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,524评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,322评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,554评论 2 379