Join优化

概述

跟传统的关系型数据库类似,分布式环境中的join在提供优化器“hint”(提示)以告诉优化器选择一些执行策略。目前一些优化提示主要针对批处理中的连接(join)。在批处理中共有三个跟连接有关的转换函数:

  • join:默认为等值连接(Equi-join),即我们平时看到的inner join;

  • outerjoin:外连接,具体细分为left-outer join、righ-outer join、full-outer join;

  • cross:交叉连接,求两个数据集的笛卡尔积。

1.算法分析

常用来实现连接的算法有:hash join、sort-merge join以及nested loop join,下面我们对这三种算法进行简单介绍。首先hash算法实现连接时,通常分为两个阶段:

  1. build:为参与连接的两个数据集中较小的数据集准备好哈希表,哈希表中的记录包含着连接的属性以及它对应的行。因为哈希表是通过对连接属性应用一个哈希函数来访问的,因此通过它将比扫描初始数据集更快地发现给定的连接属性对应的行;

  2. probe:一旦哈希表构建完成,会扫描更大的数据集并通过从更小的数据集匹配哈希表以发现相关的行。

而使用sort-merge算法实现连接时,通常也划分为两个阶段:

  1. sort:对两个数据集在他们的连接属性上进行排序;

  2. merge:合并排过序的数据集。

nested loop实现连接相对更容易理解,它使用两层嵌套循环分别作用于两个参与连接的数据集。

2.连接策略

通过上面的介绍,我们得知当选择hash算法来实现连接时,需要确定以哪个输入端作为build端,哪个输入端作为probe端,这是影响其执行效率的因素之一(因为通常选择数据量较小的数据集作为build端)。而当以sort-merge算法来实现连接时,不会区分输入端的特殊职责,也就不存在build阶段和probe阶段。

为了理清算法跟参与连接的输入端的关系,Flink将它们区分成两种不同策略的:本地策略以及传输(ship)策略。其中传输策略表示如何移动两个输入端中的数据使得它们具备连接的条件;本地策略则指两个已在本地的输入端数据集所执行的连接算法。

我们来解释一下这两种策略,假设有两个待连接的数据集(R和S)。传输策略有如下两种:

  1. Broadcast-Forward strategy (BF):该策略会将一个完整的数据集,比如R,广播到数据集S的每一个分区上,而数据集S的所有数据则一直处于本地,无需网络传输;

  2. Repartition-Repartition strategy (RR):以相同的分区函数以及用于连接的键属性分区两个数据集R、S;

正如上面已经提及的,本地策略也即连接的实现算法也有两种:

  1. Sort-Merge-Join strategy (SM):首先对两个输入端的数据集在它们的连接键属性上进行排序(排序阶段),然后合并排过序的数据集(合并阶段);

  2. Hybrid-Hash-Join strategy (HH):分为构建阶段和探索阶段;

在不指定“Hint”的情况下,Flink在进行批处理优化时会根据成本自动选择传输策略以及本地策略。优化器的一个关键特征是它会根据已经存在的数据属性来进行推理。就连接运算而言,如果某一个输入端的数据量远小于另一输入端,Flink会倾向于选择BF传输策略,将较小的输入端广播给较大的输入端的每一个分区,并在本地策略中选择HH且以较小的输入端作为HH的构建端;如果优化器得知某个(或两个)输入端已排好序,那么生成的候选计划将不再重分区该输入端,此时它更倾向于选择RR传输策略以及SM本地策略。

除了优化器的自动选择,当用户对数据集非常了解的情况下,Flink定义了JoinHint允许用户为join(inner join)指定连接策略给予优化器提示。JoinHint提供了人为选择连接策略的灵活性,其使用方式有两种,一种是直接指定两个输入端的大小:

image

另一种是直接指定连接策略:

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容