- 分类:Tree/BackTracking
- 时间复杂度: O(n) 这种把树的节点都遍历一遍的情况时间复杂度为O(n)
- 空间复杂度: O(h) 树的节点的深度
98. Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
代码:
方法1,限定子节点的范围
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: 'TreeNode') -> 'bool':
if root==None:
return True
return self.helper(root,float('-inf'),float('inf'))
def helper(self,root,l,r):
if root==None:
return True
if root.val>l and root.val<r:
if (root.left==None or root.left.val<root.val) and \
(root.right==None or root.right.val>root.val):
return self.helper(root.left,l,min(root.val,r)) and \
self.helper(root.right,max(root.val,l),r)
return False
方法2,利用中序排序的特点
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
prev=None
def isValidBST(self, root: 'TreeNode') -> 'bool':
if root==None:
return True
#判断左边
if not self.isValidBST(root.left):
return False
#判断该节点
if self.prev!=None and root.val<=self.prev:
return False
self.prev=root.val
#判断右边
return self.isValidBST(root.right)
讨论:
1.一开始我总想用memo记录下面节点的左边最大值和右边最小值,后来发现其实挺难的,看了花花酱的视频恍然大悟,原来可以使用限定范围,感觉简单多了,把代码自己撸出来了(相当于看了hint)
2.如果中序排列这棵树,那么所有的节点都将是排序的。这个方法非常巧思,要对树的几种排序方法十分熟悉才能做出来!