李飞飞TED演讲:如何教计算机理解图片?

广问AI新闻社讯     计算机视觉专家李飞飞在TED演讲介绍了她的团队为了"教"计算机理解图片,所建立的一千五百万照片的数据库,这是计算机科学领域最前沿的、具有革命性潜力的科技。


广问AI资讯:李飞飞:我们怎么教计算机理解图片_腾讯视频

我们拥有自动驾驶功能的原型车,却没有敏锐的视觉,真正区分出地上摆着纸袋还是石头。我们已经造出了超高清的相机,但我们仍然无法把这些画面传递给盲人。我们的无人机可以飞跃广阔的土地,却没有足够的视觉技术去帮我们追踪热带雨林的变化。安全摄像头到处都是,但当有孩子在泳池里溺水时它们无法向我们报警。足以证明,我们最智能的机器依然有视觉上的缺陷。

照相机获得照片是通过采集到的光线转换成二维数字矩阵来存储——也就是“像素”,但这些仍然是死板的数字。它们自身并不携带任何意义。就像听到“和”“听”完全不同,“拍照”和“看”也完全不同。通过“看”,我们实际上是“理解”了这个画面。事实上,大自然经过了5亿4千万年的努力才完成了这个工作,而这努力中更多的部分是用在进化我们的大脑内用于视觉处理的器官,而不是眼睛本身。所以“视觉”从眼睛采集信息开始,但大脑才是它真正呈现意义的地方。

我们的研究领域叫做"计算机视觉与机器学习"。这是AI(人工智能)领域的一个分支。最终,我们希望能教会机器像我们一样看见事物:识别物品、辨别不同的人、推断物体的立体形状、理解事物的关联、人的情绪、动作和意图。像你我一样,只凝视一个画面一眼就能理清整个故事中的人物、地点、事件。

实现这一目标的第一步是教计算机看到“对象”(物品),这是建造视觉世界的基石。通过与普林斯顿大学的Kai Li教授合作,我们在2007年发起了ImageNet(图片网络)计划。我们运用了互联网,这个由人类创造的最大的图片宝库。我们下载了接近10亿张图片并利用众包技术(利用互联网分配工作、发现创意或解决技术问题),像“亚马逊土耳其机器人”这样的平台来帮我们标记这些图片。在2009年,ImageNet项目诞生了——一个含有1500万张照片的数据库,涵盖了22000种物品。这些物品是根据日常英语单词进行分类组织的。无论是在质量上还是数量上,这都是一个规模空前的数据库。

现在,我们有了用来培育计算机大脑的数据库,我们回归“算法”本身。因为ImageNet的横空出世,它提供的信息财富完美地适用于一些特定类别的机器学习算法,称作“卷积神经网络”。在一个我们用来训练“对象识别模型”的典型神经网络里,有着2400万个节点,1亿4千万个参数,和150亿个联结。这是一个庞大的模型。借助ImageNet提供的巨大规模数据支持,通过大量最先进的CPU和GPU,来训练这些堆积如山的模型,“卷积神经网络”以难以想象的方式蓬勃发展起来。它成为了一个成功体系,在对象识别领域,产生了激动人心的新成果。

为了教计算机看懂图片并生成句子,“大数据”和“机器学习算法”的结合需要更进一步。现在,计算机需要从图片和人类创造的自然语言句子中同时进行学习。就像我们的大脑,把视觉现象和语言融合在一起,,创造了第一个“计算机视觉模型”,可以把一部分视觉信息,像视觉片段,与语句中的文字、短语联系起来,生成类似人类语言的句子。

一点一点地,我们正在赋予机器以视力。首先,我们教它们去“看”。然后,它们反过来也帮助我们,让我们看得更清楚。这是第一次,人类的眼睛不再独自地思考和探索我们的世界。我们将不止是“使用”机器的智力,我们还要以一种从未想象过的方式,与它们“合作”。

总而言之,李飞飞所追求的是:赋予计算机视觉智能,从而创造出更美好的未来。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容