1、引言
在IM客户端的使用场景中,基于本地数据的全文检索功能扮演着重要的角色,最常用的比如:查找聊天记录、联系人等。
类似于IM中的聊天记录查找、联系人搜索这类功能,有了全文检索能力后,确实能大大提高内容查找的效率,不然,让用户手动翻找,确实降低了用户体验。
本文将要分享的是,网易云信基于Electron的PC端是如何实现IM客户端全文检索能力的。
2、关于作者
李宁:网易云信高级前端开发工程师,负责音视频 IM SDK 的应用开发、组件化开发及解决方案开发,对 React、PaaS 组件化设计、多平台的开发与编译有丰富的实战经验。
3、系列文章
本文是系列文章中的第6篇,本系列总目录如下:
《IM跨平台技术学习(一):快速了解新一代跨平台桌面技术——Electron》
《IM跨平台技术学习(二):Electron初体验(快速开始、跨进程通信、打包、踩坑等)》
《IM跨平台技术学习(三):vivo的Electron技术栈选型、全方位实践总结》
《IM跨平台技术学习(四):蘑菇街基于Electron开发IM客户端的技术实践》
4、什么是全文检索
所谓全文检索,就是要在大量内容中找到包含某个单词出现位置的技术。
在传统的关系型数据库中,只能通过LIKE条件查询来实现,这样有几个弊端:
1)无法使用数据库索引,需要遍历全表,性能较差;
2)搜索效果差,只能首尾位模糊匹配,无法实现复杂的搜索需求;
3)无法得到内容与搜索条件的相关性。
我们在 IM 的 iOS、安卓以及桌面端中都实现了基于 SQLite 等库的本地数据全文检索功能,但是在 Web 端和 基于Electron的PC端上缺少了这部分功能。
因为在 Web 端,由于浏览器环境限制,能使用的本地存储数据库只有 IndexDB,暂不在讨论的范围内。但在基于Electron的PC端上,虽然也是内置了 Chromium 的内核,但是因为可以使用 Node.js 的能力,于是乎选择的范围就多了一些。本文内容我们具体以基于Electron的IM客户端为例,来讨论全文检索技术实现。
PS:如果你不了解什么是Electron技术,读一下这篇《快速了解Electron:新一代基于Web的跨平台桌面技术》。
我们先来具体看下该如何实现全文检索。
要实现全文检索,离不开以下两个知识点:
1)倒排索引;
2)分词。
这两个技术是实现全文检索的技术以及难点,其实现的过程相对比较复杂,在聊全文索引的实现前,我们具体学习一下这两个技术的原理。
5、什么是倒排索引
先简单介绍下倒排索引,倒排索引的概念区别于正排索引:
1)正排索引:是以文档对象的唯一 ID 作为索引,以文档内容作为记录的结构;
2)倒排索引:是以文档内容中的单词作为索引,将包含该词的文档 ID 作为记录的结构。
以倒排索引库 search-index 举个实际的例子:
在我们的 IM 中,每条消息对象都有 idClient 作为唯一 ID,接下来我们输入「今天天气真好」,将其每个中文单独分词(分词的概念我们在下文会详细分享),于是输入变成了「今」、「天」、「天」、「气」、「真」、「好」。再通过 search-index 的 PUT 方法将其写入库中。
最后看下上述例子存储内容的结构:
如是图所示:可以看到倒排索引的结构,key 是分词后的单个中文、value 是包含该中文消息对象的 idClient 组成的数组。
当然:search-index 除了以上这些内容,还有一些其他内容,例如 Weight、Count 以及正排的数据等,这些是为了排序、分页、按字段搜索等功能而存在的,本文就不再细细展开了。
6、什么是分词
6.1基本概念
分词就是将原先一条消息的内容,根据语义切分成多个单字或词句,考虑到中文分词的效果以及需要在 Node 上运行,我们选择了Nodejieba作为基础分词库。
以下是 jieba 分词的流程图:
以“去北京大学玩”为例,我们选择其中最为重要的几个模块分析一下。
6.2加载词典
jieba 分词会在初始化时先加载词典,大致内容如下:
6.3构建前缀词典
接下来会根据该词典构建前缀词典,结构如下:
其中:“北京大”作为“北京大学”的前缀,它的词频是0,这是为了便于后续构建 DAG 图。
6.4构建 DAG 图
DAG 图是 Directed Acyclic Graph 的缩写,即有向无环图。
基于前缀词典,对输入的内容进行切分。
其中:
1)“去”没有前缀,因此只有一种切分方式;
2)对于“北”,则有“北”、“北京”、“北京大学”三种切分方式;
3)对于“京”,也只有一种切分方式;
4)对于“大”,有“大”、“大学”两种切分方式;
5)对于“学”和“玩”,依然只有一种切分方式。
如此,可以得到每个字作为前缀词的切分方式。
其 DAG 图如下图所示:
6.5最大概率路径计算
以上 DAG 图的所有路径如下:
去/北/京/大/学/玩
去/北京/大/学/玩
去/北京/大学/玩
去/北京大学/玩
因为每个节点都是有权重(Weight)的,对于在前缀词典里的词语,它的权重就是它的词频。因此我们的问题就是想要求得一条最大路径,使得整个句子的权重最高。
这是一个典型的动态规划问题,首先我们确认下动态规划的两个条件。
1)重复子问题:
对于节点 i 和其可能存在的多个后继节点 j 和 k:
1)任意通过i到达j的路径的权重 = 该路径通过i的路径权重 + j的权重,即 R(i -> j) = R(i) + W(j);
2)任意通过i到达k的路径的权重 = 该路径通过i的路径权重 + k的权重,即 R(i -> k) = R(i) + W(k)。
即对于拥有公共前驱节点 i 的 j 和 k,需要重复计算到达 i 路径的权重。
2)最优子结构:
设整个句子的最优路径为 Rmax,末端节点为 x,多个可能存在的前驱节点为 i、j、k。
得到公式如下:
Rmax = max(Rmaxi, Rmaxj, Rmaxk) + W(x)
于是问题变成了求解 Rmaxi、Rmaxj 以及 Rmaxk,子结构里的最优解即是全局最优解的一部分。
如上,最后计算得出最优路径为“去/北京大学/玩”。
6.6HMM 隐式马尔科夫模型
对于未登陆词,jieba 分词采用 HMM(Hidden Markov Model 的缩写)模型进行分词。
它将分词问题视为一个序列标注问题,句子为观测序列,分词结果为状态序列。
jieba 分词作者在 issue 中提到,HMM 模型的参数基于网上能下载到的 1998 人民日报的切分语料,一个 MSR 语料以及自己收集的 TXT 小说、用 ICTCLAS 切分,最后用 Python 脚本统计词频而成。
该模型由一个五元组组成,并有两个基本假设。
五元组:
1)状态值集合;
2)观察值集合;
3)状态初始概率;
4)状态转移概率;
5)状态发射概率。
基本假设:
1)齐次性假设:即假设隐藏的马尔科夫链在任意时刻 t 的状态只依赖于其前一时刻 t-1 的状态,与其它时刻的状态及观测无关,也与时刻 t 无关;
2)观察值独立性假设:即假设任意时刻的观察值只与该时刻的马尔科夫链的状态有关,与其它观测和状态无关。
状态值集合即{ B: begin, E: end, M: middle, S: single },表示每个字所处在句子中的位置,B 为开始位置,E 为结束位置,M 为中间位置,S 是单字成词。
观察值集合就是我们输入句子中每个字组成的集合。
状态初始概率表明句子中的第一个字属于 B、M、E、S 四种状态的概率,其中 E 和 M 的概率都是0,因为第一个字只可能 B 或者 S,这与实际相符。
状态转移概率表明从状态 1 转移到状态 2 的概率,满足齐次性假设,结构可以用一个嵌套的对象表示:
P = {
B: {E: -0.510825623765990, M: -0.916290731874155},
E: {B: -0.5897149736854513, S: -0.8085250474669937},
M: {E: -0.33344856811948514, M: -1.2603623820268226},
S: {B: -0.7211965654669841, S: -0.6658631448798212},
}
P['B']['E'] 表示从状态 B 转移到状态 E 的概率(结构中为概率的对数,方便计算)为 0.6,同理,P['B']['M'] 表示下一个状态是 M 的概率为 0.4,说明当一个字处于开头时,下一个字处于结尾的概率高于下一个字处于中间的概率,符合直觉,因为二个字的词比多个字的词要更常见。
状态发射概率表明当前状态,满足观察值独立性假设,结构同上,也可以用一个嵌套的对象表示:
P = {
B: {'突': -2.70366861046, '肃': -10.2782270947, '适': -5.57547658034},
M: {'要': -4.26625051239, '合': -2.1517176509, '成': -5.11354837278},
S: {……},
E: {……},
}
P['B']['突'] 的含义就是状态处于 B,观测的字是“突”的概率的对数值等于 -2.70366861046。
最后,通过Viterbi算法,输入观察值集合,将状态初始概率、状态转移概率、状态发射概率作为参数,输出状态值集合(即最大概率的分词结果)。关于Viterbi算法,本文不再详细展开,有兴趣的读者可以自行查阅。
7、技术实现
上节中介绍的全文检索这两块技术,是我们架构的技术核心。基于此,我们对IM 的 Electron 端技术架构做了改进。以下将详细介绍之。
7.1架构图详解
考虑到全文检索只是 IM 中的一个功能,为了不影响其他 IM 的功能,并且能更快的迭代需求,所以采用了如下的架构方案。
架构图如下:
如上图所示,右边是之前的技术架构,底层存储库使用了 indexDB,上层有读写两个模块。
读写模块的具体作用是:
1)当用户主动发送消息、主动同步消息、主动删除消息以及收到消息的时候,会将消息对象同步到 indexDB;
2)当用户需要查询关键字的时候,会去 indexDB 中遍历所有的消息对象,再使用 indexOf 判断每一条消息对象是否包含所查询的关键字(类似 LIKE)。
那么,当数据量大的时候,查询的速度是非常缓慢的。
左边是加入了分词以及倒排索引数据库的新的架构方案,这个方案不会对之前的方案有任何影响,只是在之前的方案之前加了一层。
现在,读写模块的工作逻辑:
1)当用户主动发送消息、主动同步消息、主动删除消息以及收到消息的时候,会将每一条消息对象中的消息经过分词后同步到倒排索引数据库;
2)当用户需要查询关键字的时候,会先去倒排索引数据库中找出对应消息的 idClient,再根据 idClient 去 indexDB 中找出对应的消息对象返回给用户。
7.2架构优点
该方案有以下4个优点:
1)速度快:通过 search-index 实现倒排索引,从而提升了搜索速度;
2)跨平台:因为 search-index 与 indexDB 都是基于 levelDB,因此 search-index 也支持浏览器环境,这样就为 Web 端实现全文检索提供了可能性;
3)独立性:倒排索引库与 IM 主业务库 indexDB 分离;
4)灵活性:全文检索以插件的形式接入。
针对上述第“3)”点:当 indexDB 写入数据时,会自动通知到倒排索引库的写模块,将消息内容分词后,插入到存储队列当中,最后依次插入到倒排索引数据库中。当需要全文检索时,通过倒排索引库的读模块,能快速找到对应关键字的消息对象的 idClient,根据 idClient 再去 indexDB 中找到消息对象并返回。
针对上述第“4)”点:它暴露出一个高阶函数,包裹 IM 并返回新的经过继承扩展的 IM,因为 JS 面向原型的机制,在新的 IM 中不存在的方法,会自动去原型链(即老的 IM)当中查找,因此,使得插件可以聚焦于自身方法的实现上,并且不需要关心 IM 的具体版本,并且插件支持自定义分词函数,满足不同用户不同分词需求的场景
7.3使用效果
使用了如上架构后,经过我们的测试,在数据量 20W 的级别上,搜索时间从最开始的十几秒降到一秒内,搜索速度快了 20 倍左右。
8、本文小结
本文中,我们便基于Nodejieba和search-index在 Electron 上实现了IM聊天消息的全文检索,加快了聊天记录的搜索速度。
当然,后续我们还会针对以下方面做更多的优化,比如以下两点:
1)写入性能 :在实际的使用中,发现当数据量大了以后,search-index 依赖的底层数据库 levelDB 会存在写入性能瓶颈,并且 CPU 和内存的消耗较大。经过调研,SQLite 的写入性能相对要好很多,从观测来看,写入速度只与数据量成正比,CPU 和内存也相对稳定,因此,后续可能会考虑用将 SQLite 编译成 Node 原生模块来替换 search-index。
2)可扩展性 :目前对于业务逻辑的解耦还不够彻底。倒排索引库当中存储了某些业务字段。后续可以考虑倒排索引库只根据关键字查找消息对象的 idClient,将带业务属性的搜索放到 indexDB 中,将倒排索引库与主业务库彻底解耦。
以上,就是本文的全部分享,希望我的分享能对大家有所帮助。
9、参考资料
[5]融云基于Electron的IM跨平台SDK改造实践总结
(本文已同步发布于:http://www.52im.net/thread-4065-1-1.html)