ES中的分词器

转载自:https://blog.csdn.net/xiaomin1991222/article/details/50981874https://segmentfault.com/a/1190000012553894

概念介绍

全文搜索引擎会用某种算法对要建索引的文档进行分析, 从文档中提取出若干Token(词元), 这些算法称为Tokenizer(分词器), 这些Token会被进一步处理, 比如转成小写等, 这些处理算法被称为Token Filter(词元处理器),被处理后的结果被称为Term(词), 文档中包含了几个这样的Term被称为Frequency(词频)。 引擎会建立Term和原文档的Inverted Index(倒排索引), 这样就能根据Term很快到找到源文档了。 文本被Tokenizer处理前可能要做一些预处理, 比如去掉里面的HTML标记, 这些处理的算法被称为Character Filter(字符过滤器), 这整个的分析算法被称为Analyzer(分析器)

整个分析过程,如下图所示:

ES中的分词器

从第一部分内容可以看出:Analyzer(分析器)由Tokenizer(分词器)和Filter(过滤器)组成。

1. ES内置分析器

2. ES内置分词器

3. ES内置过滤器

3.1 ES内置的token filter

3.2 ES内置的character filter

自定义分析器

ES允许用户通过配置文件elasticsearch.yml自定义分析器Analyzer,如下:

index:
   analysis:
      analyzer:
        myAnalyzer:
            tokenizer: standard
            filter: [standard, lowercase, stop]

上面配置信息注册了一个分析器myAnalyzer,在次注册了之后可以在索引或者查询的时候直接使用。该分析器的功能和标准分析器差不多,tokenizer: standard,使用了标准分词器 ;filter: [standard, lowercase, stop],使用了标准过滤器、转小写过滤器和停用词过滤器。

中文分词器es-ik

ElasticSearch默认使用的标准分词器在处理中文的时候会把中文单词切分成一个一个的汉字,所以在很多时候我们会发现效果并不符合我们预期,尤其在我们使用中文文本切分之后本该为一个词语却成了单个的汉字,因此这里我们使用效果更佳的中文分词器es-ik。

ik 带有两个分词器:

  • ik_max_word :会将文本做最细粒度的拆分;尽可能多的拆分出词语
  • ik_smart:会做最粗粒度的拆分;已被分出的词语将不会再次被其它词语占有

区别:

# ik_max_word

curl -XGET 'http://localhost:9200/_analyze?pretty&analyzer=ik_max_word' -d '联想是全球最大的笔记本厂商'
#返回

{
  "tokens" : [
    {
      "token" : "联想",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "全球",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "最大",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "的",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
      "token" : "笔记本",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "笔记",
      "start_offset" : 8,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "本厂",
      "start_offset" : 10,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "厂商",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 8
    }
  ]
}


# ik_smart

curl -XGET 'http://localhost:9200/_analyze?pretty&analyzer=ik_smart' -d '联想是全球最大的笔记本厂商'

# 返回

{
  "tokens" : [
    {
      "token" : "联想",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "全球",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "最大",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "的",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
      "token" : "笔记本",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "厂商",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 6
    }
  ]
}

下面我们来创建一个索引,使用 ik。创建一个名叫 iktest 的索引,设置它的分析器用 ik ,分词器用 ik_max_word,并创建一个 article 的类型,里面有一个 subject 的字段,指定其使用 ik_max_word 分词器。

curl -XPUT 'http://localhost:9200/iktest?pretty' -d '{
    "settings" : {
        "analysis" : {
            "analyzer" : {
                "ik" : {
                    "tokenizer" : "ik_max_word"
                }
            }
        }
    },
    "mappings" : {
        "article" : {
            "dynamic" : true,
            "properties" : {
                "subject" : {
                    "type" : "string",
                    "analyzer" : "ik_max_word"
                }
            }
        }
    }
}'

批量添加几条数据,这里我指定元数据 _id 方便查看,subject 内容为我随便找的几条新闻的标题

curl -XPOST http://localhost:9200/iktest/article/_bulk?pretty -d '
{ "index" : { "_id" : "1" } }
{"subject" : ""闺蜜"崔顺实被韩检方传唤 韩总统府促彻查真相" }
{ "index" : { "_id" : "2" } }
{"subject" : "韩举行"护国训练" 青瓦台:决不许国家安全出问题" }
{ "index" : { "_id" : "3" } }
{"subject" : "媒体称FBI已经取得搜查令 检视希拉里电邮" }
{ "index" : { "_id" : "4" } }
{"subject" : "村上春树获安徒生奖 演讲中谈及欧洲排外问题" }
{ "index" : { "_id" : "5" } }
{"subject" : "希拉里团队炮轰FBI 参院民主党领袖批其“违法”" }

查询 “希拉里和韩国”

curl -XPOST http://localhost:9200/iktest/article/_search?pretty  -d'
{
    "query" : { "match" : { "subject" : "希拉里和韩国" }},
    "highlight" : {
        "pre_tags" : ["<font color='red'>"],
        "post_tags" : ["</font>"],
        "fields" : {
            "subject" : {}
        }
    }
}
'
#返回
{
  "took" : 113,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "failed" : 0
  },
  "hits" : {
    "total" : 4,
    "max_score" : 0.034062363,
    "hits" : [ {
      "_index" : "iktest",
      "_type" : "article",
      "_id" : "2",
      "_score" : 0.034062363,
      "_source" : {
        "subject" : "韩举行"护国训练" 青瓦台:决不许国家安全出问题"
      },
      "highlight" : {
        "subject" : [ "<font color=red>韩</font>举行"护<font color=red>国</font>训练" 青瓦台:决不许国家安全出问题" ]
      }
    }, {
      "_index" : "iktest",
      "_type" : "article",
      "_id" : "3",
      "_score" : 0.0076681254,
      "_source" : {
        "subject" : "媒体称FBI已经取得搜查令 检视希拉里电邮"
      },
      "highlight" : {
        "subject" : [ "媒体称FBI已经取得搜查令 检视<font color=red>希拉里</font>电邮" ]
      }
    }, {
      "_index" : "iktest",
      "_type" : "article",
      "_id" : "5",
      "_score" : 0.006709609,
      "_source" : {
        "subject" : "希拉里团队炮轰FBI 参院民主党领袖批其“违法”"
      },
      "highlight" : {
        "subject" : [ "<font color=red>希拉里</font>团队炮轰FBI 参院民主党领袖批其“违法”" ]
      }
    }, {
      "_index" : "iktest",
      "_type" : "article",
      "_id" : "1",
      "_score" : 0.0021509775,
      "_source" : {
        "subject" : ""闺蜜"崔顺实被韩检方传唤 韩总统府促彻查真相"
      },
      "highlight" : {
        "subject" : [ ""闺蜜"崔顺实被<font color=red>韩</font>检方传唤 <font color=red>韩</font>总统府促彻查真相" ]
      }
    } ]
  }
}

这里用了高亮属性 highlight,直接显示到 html 中,被匹配到的字或词将以红色突出显示。若要用过滤搜索,直接将 match 改为 term 即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容

  • Elasticsearch 中文搜索时遇到几个问题: 当搜索关键词如:“人民币”时,如果分词将“人民币”分成“人”...
    永远de明天阅读 809评论 0 0
  • 倒排索引 正排索引:文档id到单词的关联关系 倒排索引:单词到文档id的关联关系 示例:对以下三个文档去除停用词后...
    小旋锋的简书阅读 4,618评论 1 11
  • 在上一篇文章中,我们知道client和ES交互的数据格式都是json,也知道了ES中的index和type的关系。...
    11舍的华莱士阅读 3,328评论 0 1
  • Elasticsearch 中文搜索时遇到几个问题: 当搜索关键词如:“人民币”时,如果分词将“人民币”分成“人”...
    sudop阅读 67,356评论 5 42
  • 我想坐在小时候的地头 高铁完成了现代人很多的不可能 我做到了田间 只是再也没有儿时那种快乐 只有炙热的天气 和内心...
    土的世界阅读 161评论 0 0