复现Cell附图 |类器官的单细胞分析

大家好!我们又见面啦!今儿带领大家复现一个小图。

这篇文章发表于2020年4月24日的Cell主刊,题为Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2,其中作者利用类器官的单细胞分析为整个文章做到了锦上添花!

这篇文章发表前,已经有研究报道ACE2(angiotensin converting enzyme 2)是严重急性呼吸综合征冠状病毒(SARS-CoV)的关键受体,并且ACE2可以保护肺脏免受伤害。ACE2现在也被确定为SARS-CoV-2感染的关键受体,并且有人提出抑制这种相互作用可以用于治疗COVID-19患者的想法。但是,人类重组可溶性ACE2(hrsACE2)是否会阻止SARS-CoV-2的生长还尚不清楚。该团队就这一问题研究发现hrsACE2抑制SARS-CoV-2感染呈现剂量依赖性,SARS-CoV-2可以直接感染人血管类器官和肾脏类器官,并且可以被hrsACE2所抑制。文章总结得到hrsACE2可以显著阻断SARS-CoV-2感染的早期阶段

作者使用单细胞转录组测序的原因非常清晰,就是肾脏类器官ACE2的表达方面与正常细胞相同,在近端小管和足细胞II细胞亚群中分别存在表达ACE2的细胞,其中近端小管的标记基因为SLC3A1SLC27A2,足细胞的标记基因为PODXLNPHS1NPHS2,说明利用类器官进行实验的可靠性。(说点别的,我第一次接触这个概念时以为类器官指的是在器官体型上会非常相似,很是惊奇,后来得知类器官其实就是将病人的细胞进行培养,具有3D效果,并且能够重现对应器官的部分功能)

下面就是本次要复现的图Figure S2

Figure S2. Single-Cell RNA-Seq Analysis of Kidney Organoids Reveals ACE2 Expression in Proximal Tubule Cells, Related to Figure 4

(A) UMAP plot displaying the results after unbiased clustering. Subpopulations of renal endothelial-like, mesenchymal, proliferating, podocyte and tubule cells were identified.
(B) Expression of ACE2 projected in the UMAP reduction.
(C) Expression of different cellular markers: SLC3A1, SLC27A2 (Proximal Tubule); PODXL, NPHS1, NPHS2 (Podocyte); CLDN4, MAL (Loop of Henle) and CD93 (Renal Endothelial-like cells).

Figure 4. SARS-CoV-2 Infections of Human Kidney Organoids  

(A) Representative images of a kidney organoid at day 20 of differentiation visualized using light microscopy (top left inset; scale bar, 100 μm) and confocal microscopy. Confocal microscopy images show tubular-like structures labeled with Lotus tetraglobus lectin (LTL, in green) and podocyte-like cells showing positive staining for nephrin (in turquoise). Laminin (in red) was used as a basement membrane marker. DAPI labels nuclei. A magnified view of the boxed region shows a detail of tubular structures. Scale bars, 250 and 100 μm, respectively.
(B) Recovery of viral RNA in the kidney organoids at day 6 dpi with SARS-CoV-2. Data are represented as mean ± SD.
(C) Determination of progeny virus. Supernatants of SARS-CoV-2 infected kidney organoids were collected 6 dpi and then used to infect Vero E6 cells. After 48 h, Vero E6 cells were washed and viral RNA assessed by qRT-PCR. The data show that infected kidney organoids can produce progeny SARS-CoV-2 viruses, depending on the initial level of infection. Data are represented as mean ± SD.
(D) Effect of hrsACE2 on SARS-CoV-2 infections kidney organoids. Organoids were infected with a mix of 106 infectious viral particles and hrsACE2 for 1 h. 3 dpi, levels of viral RNA were assessed by qRT-PCR. hrsACE2 significantly decreased the level of SARS-CoV-2 infections in the kidney organoids. Data are represented as mean ± SD (Student’s t test: ∗p < 0.05).

测序数据分析介绍

1.工具:Chromium Single Cell 3′ Library
2.筛选:668 < UMIs per cell < 23101, 489 < Genes per cell < 5651 and % UMIs assigned to mitochondrial genes < 50.
3.降维及聚类:PCs=20,Resolution=0.44.细胞分型:KIT (Kidney Interactive Transcriptomics webpage )(http://humphreyslab.com/SingleCell/).

首先需要下载rawdata:GSE147863(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147863) (建议使用VPN下载)

加载R包

library(Seurat)

使用Read10X_h5读入数据

KidneyOrganoid<-Read10X_h5("KidneyOrganoid_FilteredGeneBCMatrices.h5")

建立seurat对象

KidneyOrganoid <- CreateSeuratObject(counts = KidneyOrganoid, project = "KidneyOrganoid_ACE2", min.cells = 3, min.features = 400)KidneyOrganoid[["percent.mt"]] <- PercentageFeatureSet(KidneyOrganoid, pattern = "^MT-") # 计算线粒体基因比例

QC

## QC Metrics PlotsVlnPlot(KidneyOrganoid, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3,pt.size = 0.3)
## Get QC Thresholds
quantile(KidneyOrganoid@meta.data$nCount_RNA,c(0.025,0.975))quantile(KidneyOrganoid@meta.data$nFeature_RNA,c(0.025,0.975))

QC plots

## QC Plots
plot(KidneyOrganoid@meta.data$nCount_RNA,KidneyOrganoid@meta.data$nFeature_RNA,pch=16,cex=0.7,bty="n")abline(h=c(488,5653),v=c(667,23108),lty=2,lwd=1,col="red")

按照QC参数进行过滤

## Filtering based on QC parametersKidneyOrganoid <- subset(KidneyOrganoid, subset = nFeature_RNA > 488 & nFeature_RNA < 5653 & nCount_RNA > 667 & nCount_RNA < 23108 & percent.mt < 50)

归一化及标准化

## Log Normalization
KidneyOrganoid<-NormalizeData(KidneyOrganoid)

## Scale DataKidneyOrganoid <- ScaleData(KidneyOrganoid, features = rownames(KidneyOrganoid))

计算细胞周期

## Cell Cycle Effect
KidneyOrganoid<-CellCycleScoring(KidneyOrganoid,s.features = cc.genes$s.genes,g2m.features = cc.genes$g2m.genes)
KidneyOrganoid <- RunPCA(KidneyOrganoid, features = unlist(cc.genes))DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2),group.by = "Phase")

去批次效应

发现细胞周期对细胞分群具有一定的影响,进行去批次:

## SCTransformKidneyOrganoid<-SCTransform(KidneyOrganoid,vars.to.regress = c("S.Score","G2M.Score","percent.mt","nFeature_RNA"))

重新PCA

## PCA
KidneyOrganoid <- RunPCA(KidneyOrganoid, features = VariableFeatures(object = KidneyOrganoid))
DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2))

## Some Plots
VizDimLoadings(KidneyOrganoid, dims = 1:2, reduction = "pca")DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2))

滚石图

## Selecting PCA ComponentsElbowPlot(KidneyOrganoid,ndims = 30)

聚类可视化

## Clustering
KidneyOrganoid <- FindNeighbors(KidneyOrganoid, dims = 1:20)
KidneyOrganoid <- FindClusters(KidneyOrganoid, resolution = 0.4)

# Non Linear Dimensional Reduction
KidneyOrganoid <- RunUMAP(KidneyOrganoid, dims = 1:20)

# UMAP plot
colss<-c("#A6CEE3", "#1F78B4", "#08306B", "#B2DF8A", "#006D2C", "#8E0152",
"#DE77AE", "#CAB2D6", "#6A3D9A", "#FB9A99", "#E31A1C", "#B15928",
"#619CFF","#FF67A4","#00BCD8")
DimPlot(KidneyOrganoid, reduction = "umap",label = T,cols=colss)

确实是很像哦。。。。再看看基因的表达:

# Feature Plots on interesting genes
FeaturePlot(KidneyOrganoid,c("ACE2"),cols = c("lightgray","red"),order = T)FeaturePlot(KidneyOrganoid,c("SLC3A1","SLC27A2","PODXL","NPHS2","NPHS1","CLDN4","MAL","CD93"),cols = c("lightgray","red"),order = T)
# 寻找高变基因KidneyOrganoid.markers <- FindAllMarkers(KidneyOrganoid, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

作者将源代码放在https://github.com/jpromeror/SC_KidneyOrganoid_ACE2 ,大家可以试一试哈!

参考文献

Monteil, Vanessa, et al. “Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.” Cell (2020).


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352