百度AI攻略:人脸检测

认证授权:

在开始调用任何API之前需要先进行认证授权,具体的说明请参考:

http://ai.baidu.com/docs#/Auth/top

获取Access Token

向授权服务地址https://aip.baidubce.com/oauth/2.0/token发送请求(推荐使用POST),并在URL中带上以下参数:

grant_type:?必须参数,固定为client_credentials;

client_id:?必须参数,应用的API Key;

client_secret:?必须参数,应用的Secret Key;

例如:

https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=Va5yQRHlA4Fq5eR3LT0vuXV4&client_secret=0rDSjzQ20XUj5itV6WRtznPQSzr5pVw2&

具体代码如下:

# -*- coding: utf-8 -*-

#!/usr/bin/env python

import urllib

import json

#client_id 为官网获取的AK, client_secret 为官网获取的SK

client_id =【百度云应用的AK】

client_secret =【百度云应用的SK】

#获取token

def get_token():

    host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret

    request = urllib.request.Request(host)

    request.add_header('Content-Type', 'application/json; charset=UTF-8')

    response = urllib.request.urlopen(request)

    token_content = response.read()

    if token_content:

        token_info = json.loads(token_content)

        token_key = token_info['access_token']

    return token_key

人脸检测与属性分析

具体说明请查阅:http://ai.baidu.com/docs#/Face-Detect-V3/top

人脸识别接口分为V2和V3两个版本,本文档为V3版本接口的说明文档,请确认您在百度云后台获得的是V3版本接口权限,再来阅读本文档。

能力介绍

接口能力

人脸检测:检测图片中的人脸并标记出位置信息;

人脸关键点:展示人脸的核心关键点信息,及150个关键点信息。

人脸属性值:展示人脸属性信息,如年龄、性别等。

人脸质量信息:返回人脸各部分的遮挡、光照、模糊、完整度、置信度等信息。

业务应用

典型应用场景:如人脸属性分析,基于人脸关键点的加工分析,人脸营销活动等。

调用方式

向API服务地址使用POST发送请求,必须在URL中带上参数access_token,可通过后台的API Key和Secret Key生成,具体方式请参考“Access Token获取”。

请求说明

请求体格式化:Content-Type为application/json,通过json格式化请求体。

Base64编码:请求的图片需经过Base64编码,图片的base64编码指将图片数据编码成一串字符串,使用该字符串代替图像地址。您可以首先得到图片的二进制,然后用Base64格式编码即可。需要注意的是,图片的base64编码是不包含图片头的,如data:image/jpg;base64,

图片格式:现支持PNG、JPG、JPEG、BMP,不支持GIF图片

HTTP方法:POST

请求URL:https://aip.baidubce.com/rest/2.0/face/v3/detect

Python3代码如下:

#获取人脸检测信息

def face_detect_url(url):

    request_url = "https://aip.baidubce.com/rest/2.0/face/v3/detect"


    params = dict()

    params['image'] = url

    params['image_type'] = 'URL'

    params['face_field'] = 'faceshape,facetype,landmark,landmark72'


    params = json.dumps(params).encode('utf-8')


    access_token=get_token()

    request_url = request_url + "?access_token=" + access_token

    request = urllib.request.Request(url=request_url, data=params)

    request.add_header('Content-Type', 'application/json')

    response = urllib.request.urlopen(request)

    content = response.read()

    if content:

        print (content)

        return content

    else:

        return ''

这个函数将根据网上图片URL地址获取图片并进行检测。让我们用网上找的一张图片进行测试:

执行代码:

image_url='http://p0.qhimgs4.com/t0159dd32381d0c25b7.jpg'

face_detect_url(image_url)

返回结果:

b'{"error_code":0,"error_msg":"SUCCESS","log_id":304592843452042151,"timestamp":1554345204,"cached":0,"result":{"face_num":1,"face_list":[{"face_token":"5951950e8c05735152e696163b9a59cc","location":{"left":153.82,"top":248.56,"width":318,"height":317,"rotation":3},"face_probability":0.97,"angle":{"yaw":16.99,"pitch":10.57,"roll":-2.37},"face_shape":{"type":"heart","probability":0.37},"face_type":{"type":"human","probability":0.96},"landmark":[{"x":204.94,"y":313.87},{"x":340.33,"y":321.52},{"x":244.5,"y":402.48},{"x":256,"y":469.66}],"landmark72":[{"x":150.9,"y":310.37},{"x":146.88,"y":354.74},{"x":146.91,"y":400.53},{"x":155.44,"y":445.99},{"x":174.77,"y":493.18},{"x":205.04,"y":541.51},{"x":246.8,"y":572.16},{"x":303.11,"y":568.65},{"x":361.73,"y":541.55},{"x":413.84,"y":495.42},{"x":440.27,"y":442.75},{"x":456.03,"y":388.79},{"x":467.57,"y":334.35},{"x":171.98,"y":314.72},{"x":185.4,"y":302.98},{"x":200.74,"y":300.89},{"x":217.11,"y":307.92},{"x":229.67,"y":325.15},{"x":213.74,"y":325.74},{"x":196.71,"y":325.45},{"x":182.26,"y":321.23},{"x":204.94,"y":313.87},{"x":157.69,"y":275.88},{"x":172.48,"y":256.88},{"x":193.09,"y":254.09},{"x":213.77,"y":259.09},{"x":231.35,"y":276.15},{"x":211.35,"y":272.76},{"x":191.75,"y":269.52},{"x":173.47,"y":269.62},{"x":307.03,"y":329.36},{"x":321.9,"y":313.15},{"x":339.63,"y":308.27},{"x":357.91,"y":313.5},{"x":374.37,"y":327.15},{"x":358.16,"y":332.11},{"x":339.75,"y":333.86},{"x":322.58,"y":332.47},{"x":340.33,"y":321.52},{"x":299.9,"y":278.14},{"x":326.07,"y":261.57},{"x":354.67,"y":260.59},{"x":383.58,"y":268.55},{"x":406.72,"y":293.57},{"x":380.55,"y":281.15},{"x":353.84,"y":276.67},{"x":326.51,"y":278},{"x":243.97,"y":326.97},{"x":234.67,"y":354.6},{"x":224.5,"y":382.86},{"x":212.93,"y":410},{"x":229.08,"y":417.3},{"x":272.61,"y":419.89},{"x":299.76,"y":416.45},{"x":288.56,"y":386.93},{"x":285.88,"y":358.4},{"x":282.93,"y":329.6},{"x":244.5,"y":402.48},{"x":200.9,"y":453.98},{"x":223.42,"y":448},{"x":251.74,"y":451.01},{"x":289.71,"y":452.96},{"x":329.26,"y":462.63},{"x":293.65,"y":494.31},{"x":249.35,"y":504.21},{"x":216.52,"y":487},{"x":223.98,"y":456.81},{"x":251.93,"y":461.81},{"x":289.22,"y":461.47},{"x":289.29,"y":480.88},{"x":251.7,"y":484.9},{"x":223.34,"y":475.3}]}]}}'


现在大家只能看到检测的数字,为了方便大家查看图片,我把获取图片及画图的Python3代码也写了。如下:

def get_landmark72(content):

    content=content.decode('utf-8')

    data = json.loads(content)

    #print (data)

    return data['result']['face_list'][0]['landmark72']

def drow_face_line_72(url,imagefile,linedfile,landmark72):

    from PIL import Image, ImageDraw

    from io import BytesIO

    import requests

    response = requests.get(url)

    image_origin = Image.open(BytesIO(response.content))

    image_origin.save(imagefile)


    restart_points=[0,13,22,30,39,47,58]


    #image_origin = Image.open(imagefile)

    draw =ImageDraw.Draw(image_origin)


    i=0

    for point in landmark72:

        if i in restart_points:

            start_x=point['x']

            start_y=point['y']

        else:

            draw.line((start_x, start_y, point['x'], point['y']), 'blue')

            start_x=point['x']

            start_y=point['y']

        i=i+1



    #draw.line((0,0) +Image1.size, fill=128)

    image_origin.show()

    image_origin.save(linedfile, "JPEG")

def face_detect_line(url,imagefile,linedfile):

    content=face_detect_url(url)

    if len(content)>0:

        landmark72=get_landmark72(content)

        drow_face_line_72(url,'origin.jpg','lined.jpg',landmark72)

执行face_detect_line(image_url,'origin.jpg','lined.jpg'),将在代码目录生成,两张图片一张是原图,一张是根据landmark72划线后的图片。

如下图所示(图片来自网上,仅为示例使用):

大家还可以用网上找的其他人脸图片的URL来试一下。

建议:

感觉现在的人脸检测功能十分的强大和准确,有一个小建议,如果是张嘴的图,能否把人的牙齿和舌头等其他部分区分的点也都标出来。如果能实现的话就太好了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容