iOS 源码分析 objc_msgSend class_getInstanceMethod class_getClassMethod 实现原理
消息转发我之前文章有写过,网上也有很多博客,但是消息转发的具体流程,方法查找的具体流程到底是什么样的呢,我们今天来看看源码,看看方法查找的具体流程到底是什么。
class_getInstanceMethod
当我们调用 这个方法,来查找某个类的实力的方法的时候,我们看看都干了什么事,其实 objc_msgSend 还有 class_getClassMethod 是一样的道理,最后都会调到这里,只不过可能前面不同,比如 objc_msgSend,会调用汇编的方法
Method class_getInstanceMethod(Class cls, SEL sel)
{
if (!cls || !sel) return nil;
// This deliberately avoids +initialize because it historically did so.
// This implementation is a bit weird because it's the only place that
// wants a Method instead of an IMP.
#warning fixme build and search caches
// Search method lists, try method resolver, etc.
lookUpImpOrNil(cls, sel, nil,
NO/*initialize*/, NO/*cache*/, YES/*resolver*/);
#warning fixme build and search caches
return _class_getMethod(cls, sel);
}
我们可以看到调用了lookUpImpOrNil
这个方法,而且苹果还给了注释,// Search method lists, try method resolver, etc.
,搜索方法列表和方法解析器,都是什么呢?后面会讲到
/***********************************************************************
* lookUpImpOrNil.
* Like lookUpImpOrForward, but returns nil instead of _objc_msgForward_impcache
**********************************************************************/
IMP lookUpImpOrNil(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = lookUpImpOrForward(cls, sel, inst, initialize, cache, resolver);
if (imp == _objc_msgForward_impcache) return nil;
else return imp;
}
这个方法调用了另一个方法,关键实现都在这个方法里面
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
checkIsKnownClass(cls);
if (!cls->isRealized()) {
realizeClass(cls);
}
if (initialize && !cls->isInitialized()) {
runtimeLock.unlock();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.lock();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
retry:
runtimeLock.assertLocked();
// Try this class's cache.
imp = cache_getImp(cls, sel);
if (imp) goto done;
// Try this class's method lists.
{
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
}
// Try superclass caches and method lists.
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
}
// No implementation found. Try method resolver once.
if (resolver && !triedResolver) {
runtimeLock.unlock();
_class_resolveMethod(cls, sel, inst);
runtimeLock.lock();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlock();
return imp;
}
我们来一点一点分析,首先
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
checkIsKnownClass(cls);
首先将runtime锁解开,然后进行无锁缓存列表查找,cache_getImp
其实调用的是汇编方法,从代码上我们可以理解为,如果缓存列表中查到了 imp ,那么直接返回。
接着
if (!cls->isRealized()) {
realizeClass(cls);
}
检查类是否有初始化,如果没有初始化,那么初始化我们的类。
static Class realizeClassWithoutSwift(Class cls)
{
runtimeLock.assertLocked();
const class_ro_t *ro;
class_rw_t *rw;
Class supercls;
Class metacls;
bool isMeta;
if (!cls) return nil;
if (cls->isRealized()) return cls;
assert(cls == remapClass(cls));
// fixme verify class is not in an un-dlopened part of the shared cache?
ro = (const class_ro_t *)cls->data();
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data();
ro = cls->data()->ro;
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
// Normal class. Allocate writeable class data.
rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
rw->ro = ro;
rw->flags = RW_REALIZED|RW_REALIZING;
cls->setData(rw);
}
isMeta = ro->flags & RO_META;
rw->version = isMeta ? 7 : 0; // old runtime went up to 6
// Choose an index for this class.
// Sets cls->instancesRequireRawIsa if indexes no more indexes are available
cls->chooseClassArrayIndex();
if (PrintConnecting) {
_objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
cls->nameForLogging(), isMeta ? " (meta)" : "",
(void*)cls, ro, cls->classArrayIndex(),
cls->isSwiftStable() ? "(swift)" : "",
cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
}
// Realize superclass and metaclass, if they aren't already.
// This needs to be done after RW_REALIZED is set above, for root classes.
// This needs to be done after class index is chosen, for root metaclasses.
// This assumes that none of those classes have Swift contents,
// or that Swift's initializers have already been called.
// fixme that assumption will be wrong if we add support
// for ObjC subclasses of Swift classes.
supercls = realizeClassWithoutSwift(remapClass(cls->superclass));
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()));
#if SUPPORT_NONPOINTER_ISA
// Disable non-pointer isa for some classes and/or platforms.
// Set instancesRequireRawIsa.
bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
bool rawIsaIsInherited = false;
static bool hackedDispatch = false;
if (DisableNonpointerIsa) {
// Non-pointer isa disabled by environment or app SDK version
instancesRequireRawIsa = true;
}
else if (!hackedDispatch && !(ro->flags & RO_META) &&
0 == strcmp(ro->name, "OS_object"))
{
// hack for libdispatch et al - isa also acts as vtable pointer
hackedDispatch = true;
instancesRequireRawIsa = true;
}
else if (supercls && supercls->superclass &&
supercls->instancesRequireRawIsa())
{
// This is also propagated by addSubclass()
// but nonpointer isa setup needs it earlier.
// Special case: instancesRequireRawIsa does not propagate
// from root class to root metaclass
instancesRequireRawIsa = true;
rawIsaIsInherited = true;
}
if (instancesRequireRawIsa) {
cls->setInstancesRequireRawIsa(rawIsaIsInherited);
}
// SUPPORT_NONPOINTER_ISA
#endif
// Update superclass and metaclass in case of remapping
cls->superclass = supercls;
cls->initClassIsa(metacls);
// Reconcile instance variable offsets / layout.
// This may reallocate class_ro_t, updating our ro variable.
if (supercls && !isMeta) reconcileInstanceVariables(cls, supercls, ro);
// Set fastInstanceSize if it wasn't set already.
cls->setInstanceSize(ro->instanceSize);
// Copy some flags from ro to rw
if (ro->flags & RO_HAS_CXX_STRUCTORS) {
cls->setHasCxxDtor();
if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
cls->setHasCxxCtor();
}
}
// Propagate the associated objects forbidden flag from ro or from
// the superclass.
if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
(supercls && supercls->forbidsAssociatedObjects()))
{
rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
}
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
// Attach categories
methodizeClass(cls);
return cls;
}
关于这块,我的前一篇文章,class的本质 中有写到,就是讲方法添加到我们类的方法列表中,并且也会递归创建我们的父类和元类,然后
imp = cache_getImp(cls, sel);
if (imp) goto done;
在当前类的缓存中查找是否有 imp ,
if (imp) goto done;
// Try this class's method lists.
{
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
}
如果缓存中没有,就去方法列表中查找
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
assert(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
for (auto mlists = cls->data()->methods.beginLists(),
end = cls->data()->methods.endLists();
mlists != end;
++mlists)
{
method_t *m = search_method_list(*mlists, sel);
if (m) return m;
}
return nil;
}
static method_t *search_method_list(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
if (__builtin_expect(methodListIsFixedUp && methodListHasExpectedSize, 1)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
#if DEBUG
// sanity-check negative results
if (mlist->isFixedUp()) {
for (auto& meth : *mlist) {
if (meth.name == sel) {
_objc_fatal("linear search worked when binary search did not");
}
}
}
#endif
return nil;
}
static method_t *findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
assert(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name;
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
利用的是二分查找,从方法列表中,如果找到了,返回 method_t,然后调用 log_and_fill_cache
,加入到他的缓存列表中去,以便于下次查找,接下来
// Try superclass caches and method lists.
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
可以看到,去他的superClass 里面查找,
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
然后和上面一样,先去父类的缓存中查找,如果查找到了,添加到父类的缓存列表中去
如果在父类中也没有查找到,就进行到下一步,消息转发机制
if (resolver && !triedResolver) {
runtimeLock.unlock();
resolveMethod(cls, sel, inst);
runtimeLock.lock();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
static void resolveMethod(Class cls, SEL sel, id inst)
{
runtimeLock.assertUnlocked();
assert(cls->isRealized());
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
resolveInstanceMethod(cls, sel, inst);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
resolveInstanceMethod(cls, sel, inst);
}
}
}
其实就是判断是否实现了,resolveInstanceMethod
和 resolveClassMethod
方法,里面其实调用的还是 objc_msgSend,查看是否实现了这个方法,如果是 resolveClassMethod
会瞎按查找是否实现了 class method,然后在尝试查找一次 resolveInstanceMethod
,如果没有会在 retry 一次,如果这个方法还没有实现,没关系,还有下一步
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
其实就是判断是否实现了 forwardInvocation
这个方法,如果找到就添加到当前缓存中去,
这就是我们整个方法查找的过程
我们在深入探索一下 resolveMethod 这个方法,当我们不是元类的时候,会调用这个方法
static void _class_resolveInstanceMethod(Class cls, SEL sel, id inst)
{
Class met = cls->ISA();
if (! lookUpImpOrNil(cls->ISA(), SEL_resolveInstanceMethod, cls,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
// Resolver not implemented.
return;
}
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(cls, SEL_resolveInstanceMethod, sel);
// Cache the result (good or bad) so the resolver doesn't fire next time.
// +resolveInstanceMethod adds to self a.k.a. cls
IMP imp = lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/);
if (resolved && PrintResolving) {
if (imp) {
_objc_inform("RESOLVE: method %c[%s %s] "
"dynamically resolved to %p",
cls->isMetaClass() ? '+' : '-',
cls->nameForLogging(), sel_getName(sel), imp);
}
else {
// Method resolver didn't add anything?
_objc_inform("RESOLVE: +[%s resolveInstanceMethod:%s] returned YES"
", but no new implementation of %c[%s %s] was found",
cls->nameForLogging(), sel_getName(sel),
cls->isMetaClass() ? '+' : '-',
cls->nameForLogging(), sel_getName(sel));
}
}
}
这个方法首先会检测,是否实现了 SEL_resolveInstanceMethod
这个方法,也就是 resolveInstanceMethod
,,会沿着继承链一直上找,知道找到nsobject,如果我们实现了,会通过调用 objc_msgSend 向我们的类发送消息,调用这个方法,然后接下来,会 lookUpImpOrNil
调用这个方法,因为我们可能在 那个方法里面动态添加方法,这时候再去查找,就能查找到了,如果继承连都没有找到,这时候会走我们的消息转发流程,也就是 forward,这个苹果是闭源的,会为我们再次调用此意 resolveInstanceMethod
我们再看是元类的情况下
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
resolveInstanceMethod(cls, sel, inst);
}
}
首先会调用 resolveClassMethod
,然后发送消息,如果找不到,因为按照继承连最后都会找到 nsobject,元类的父类为根源类,根源类通过isa也是指向自己,而根源类的父类为 nsobject,所以,看源码,最后是去nsobject调用了 resolveInstanceMethod
这个方法。