汉诺塔的递归解法
从维基百科上获取的c++代码
#include <iostream>
#include <cstdio>
void hannoi (int n, char from, char buffer, char to)
{
if (n == 1)
{
cout << "Move disk " << n << " from " << from << " to " << to << endl;
}
else
{
hannoi (n-1, from, to, buffer);
cout << "Move disk " << n << " from " << from << " to " << to << endl;
hannoi (n-1, buffer, from, to);
}
}
int main()
{
int n;
cin >> n;
hannoi (n, 'A', 'B', 'C');
return 0;
}
输入4(即假设有4个圆盘)运行结果:
Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
Move disk 3 from A to B
Move disk 1 from C to A
Move disk 2 from C to B
Move disk 1 from A to B
Move disk 4 from A to C
Move disk 1 from B to C
Move disk 2 from B to A
Move disk 1 from C to A
Move disk 3 from B to C
Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
具体运行过程如下,为了方便将'A','B','C' 用A,B,C代替
hannoi(4,A,B,C); from = A,buffer = B,to = C //入口
hannoi(3,A,C,B); from = A,buffer = B,to = C
hannoi(2,A,B,C); from = A,buffer = B,to = C
hannoi(1,A,C,B); from = A,buffer = C,to = B //n = 1,向里递归结束
开始打印输出
-------------------------------------------------------------------------------
Move 1 A->B
Move 2 A->C hannoi(1,B,A,C); from = B,buffer = A,to = C
Move 1 B->C
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Move 3 A->B hannoi(2,C,A,B); from = C,buffer = A,to = B
hannoi(1,C,B,A); from = C,buffer = B,to = A
Move 1 C->A
Move 2 C->B hannoi(1,A,C,B); from = A,buffer = C,to = B
Move 1 A->B
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
Move 4 A->C hannoi(3,B,A,C); from = B,buffer = A,to = C
hannoi(2,B,C,A); from = B,buffer = C,to = A
hannoi(1,B,A,C); from = B,buffer = A,to = C
Move 1 B->C
Move 2 B->A hannoi(1,C,B,A); from = C,buffer = B,to = A
Move 1 C->A
Move 3 B->C hannoi(2,A,B,C); from = A,buffer = B,to = C
hannoi(1,A,C,B); from = A,buffer = C,to = B
Move 1 A->B
Move 2 A->C hannoi(1,B,A,C); from = B,buffer = A,to = C
Move 1 B->C
以上是对代码运行过程的理解
-----------------------------------------------------快乐的分割线
以下是对如何写出该递归代码的理解
借鉴知乎上的一篇文章 侵删!点击即可跳转
在假设有n个圆盘的情况下,(从上到下1,2...n标号)
抽象成三个步骤
汉诺塔4盘移动图.jpg
(a)是初始状态,也就是递归的起点,我们假设n=4, hannoi(4,A,B,C)
(b)是step1完成的时候的状态,已经将所有的n-1,这里也就是3个环从A挪到了B
(c)是step2,此时需要将第n个,也就是第四个最大的环从A挪到C
(d)是step3,此时需要将B上面的n-1个环从B挪到C
结合代码分析:
void hannoi (int n, char from, char buffer, char to)
{
if (n == 1)
{
cout << "Move disk " << n << " from " << from << " to " << to << endl;
//如果只有一个盘子,则直接将其从A移动到C
}
else
{
hannoi (n-1, from, to, buffer);
//如果有n个盘子,将n-1个盘子从A移动到B,对应(b)
cout << "Move disk " << n << " from " << from << " to " << to << endl;
//此时将第n个盘子从A移动到C,对应(c)
hannoi (n-1, buffer, from, to);
//再将B上的n-1个盘子从B移动到C,对应(d)
}
}
递归的精神就是只管当前的任务,其他任务交给下一层去执行!
写递归算法的总结:
1.先把临界条件(结束该次递归的条件)写出
2.再把其他情况用调用自身的递归实现
其他的就不管了