数据结构与算法系列(AVL树)

AVL树

AVL树,也称平衡二叉搜索树,AVL是其发明者姓名简写。AVL树属于树的一种,而且它也是一棵二叉搜索树,不同的是他通过一定机制能保证二叉搜索树的平衡,平衡的二叉搜索树的查询效率更高。

AVL树特点

  • AVL树是一棵二叉搜索树。
  • AVL树的左右子节点也是AVL树。
  • AVL树拥有二叉搜索树的所有基本特点。
  • 每个节点的左右子节点的高度之差的绝对值最多为1,即平衡因子为范围为[-1,1]。
image.png

图中红色数字表示对应节点的高度,可以看到同一层的节点高度差都没有超过1。

二叉搜索树的平衡

基础的二叉搜索树构建出来可能会存在不平衡的现象,比如极端情况下,按照A B C D E F G H顺序插入树中,结果为,

image.png

但实际上我们更想要平衡一点的二叉搜索树,因为平衡的二叉搜索树能有效提高查询效率,比如上面的要查询“H”节点则需要比较8个节点才找到,而平衡的二叉搜索树只需要比较3个节点。

所以AVL树的出现就是为了解决平衡性问题,它的核心内容就是平衡处理机制,即所谓的旋转,一共有四种形式的旋转:右单旋、左单旋、左右双旋和右左双旋。

为什么要旋转

不管是什么方式的旋转,旋转的目的是为了降低树的高度,使其平衡,假如树结构如下图,

image.png

将“A”节点添加到树中,变成如下结构,树产生了不平衡,于是检查哪里不平衡,当到“C”节点时发现高度差超过1,

image

所以需要对“C”节点进行右单旋操作将高度降到2,达到平衡。

image.png

插入方式

AVL树一共有四种插入方式,根据插入方式不同需要做不同的旋转操作,现在往下看四种插入方式,设受插入节点影响而失去平衡的节点的父节点为Z,

  • LL插入方式,插入的节点在Z节点的左子树的左子树上,如下图,“A”节点插入影响“C”节点的平衡,“C”的父节点为“E”,插入节点“A”在“E”节点的左子树的左子树上。即“B”节点的左右子节点都算LL插入。


    image.png
  • RR插入方式,插入的节点在Z节点的右子树的右子树上,如下图,“I”节点插入影响“G”节点的平衡,“G”的父节点为“E”,插入节点“I”在“E”节点的右子树的右子树上。即“H”节点的左右子节点都算RR插入。
image.png
  • LR插入方式,插入的节点在Z节点的左子树的右子树上,如下图,“C”节点插入影响“B”节点的平衡,“B”的父节点为“E”,插入节点“C”在“E”节点的左子树的右子树上。即“D”节点的左右子节点都算LR插入。


    image.png
  • RL插入方式,插入的节点在Z节点的右子树的左子树上,如下图,“G”节点插入影响“H”节点的平衡,“H”的父节点为“E”,插入节点“G”在“E”节点的右子树的左子树上。即“F”节点的左右子节点都算RL插入。


    image.png

右单旋

右单旋用于处理LL插入方式,假设存在一棵树,如下,

image.png

现插入“A”节点,假如不进行旋转的话,树结构为下图,所以遍历过程也会检查哪里不平衡,检查到“C”节点和“G”节点的高度差大于1,而且插入节点“A”属于“E”节点左子树的左子树,于是进行右单旋,

image.png

“C”节点右单旋即将“C”节点提高,原本它的父节点“E”则变为其右子节点,“C”节点原来的右子节点则变为其父节点“E”的左子节点。右单旋后的结果如下,重新达到了平衡。

image.png

左单旋

左单旋用于处理RR插入方式,假设存在一棵树,如下,


image.png

现插入“I”节点,假如不进行旋转的话,树结构为下图,所以遍历过程也会检查哪里不平衡,检查到“C”节点和“G”节点的高度差大于1,而且插入节点“I”属于“E”节点的右子树的右子树,于是进行左单旋,


image.png

“G”节点左单旋即将“G”节点提高,原本它的父节点“E”则变为其左子节点,“G”节点原来的左子节点则变为其父节点“E”的右子节点。左单旋后的结果如下,重新达到了平衡。


image.png

左右双旋

左右双旋用于处理LR插入方式,假设存在一棵树,如下,

image.png

现插入“C”节点,假如不进行旋转的话,树结构为下图,遍历过程会检查哪里不平衡,检查到“B”节点和“G”节点的高度差大于1,而且插入节点“C”属于“E”节点的左子树的右子树,于是进行左右双旋,


image.png

先以“D”节点为轴进行左单旋,结果为,

image.png

再以“D”节点为轴进行右单旋,得到最终结果,


image.png

右左双旋

右左双旋用于处理RL插入方式,假设存在一棵树,如下,

[图片上传中...(image.png-b8005a-1545466304454-0)]

现插入“G”节点,假如不进行旋转的话,树结构为下图,遍历过程会检查哪里不平衡,检查到“C”节点和“H”节点的高度差大于1,而且插入节点“G”属于“E”节点的右子树的左子树,于是进行右左双旋,


image.png

先以“F”节点为轴进行右单旋,结果为,


image.png

再以“F”节点为轴进行左单旋,得到最终结果,

image.png

插入

空树时插入节点“E”直接作为根节点,“E”节点高度设为1,


image.png

继续插入“B”节点,小于“E”节点则添加到左边,且“E”节点高度加1,

image.png

继续插入“G”节点,大于“E”节点则添加到右边,此时“E”节点高度不变,


image.png

继续插入“D”节点,最终到“B”节点的右子节点,此时“B”节点高度加1,“E”节点高度也加1,


image.png

继续插入“C”节点,最终到“D”节点的左子节点,此时“D”、“B”、“E”节点高度都分别加1,并且先发现节点“D”与它同级节点(不存在即高度为0)高度差大于1,并且属于RL插入方式,使用右左双旋处理,

image.png

以“C”节点为轴进行右单旋,结果为,

image.png

再以“C”节点为轴进行左单旋,结果如下,可以看到进过右左双旋操作后二叉树已经达到平衡了。

image.png

总结,插入时可能会遇到四种不同的插入方式,分别是:LL插入方式、RR插入方式、LR和RL插入方式。根据不同的插入方式对应做旋转操作即能使树达到平衡状态。

查找

AVL树因为属于二叉搜索树,所以查找时与BST树完全一样,比如下面这棵树,查找“D”节点,

image.png

从根节点“C”开始,

image.png

“D”大于“C”,所以往右继续查找,

image.png

“D”小于“E”,所以往左查找,找到。


image.png

删除

删除操作主要分两种情况,一种是删除后不会影响平衡,那么直接按照BST树规则删除。另外一种是删除后会影响树的平衡,那么则需要再做旋转处理。

情况一

如树的结构,要删除“B”节点,

image.png

直接找到“B”节点,且因为是叶子节点,直接删掉即可。


image.png

最终为,

image.png

但如果删除的不是“B”节点,而是“C”节点,则不能直接删除“C”节点,

image.png

应该先找到“C”节点的前驱,它的前驱为“B”节点,使用“B”替换“C”节点,


image.png

最后将原来的“B”节点删除。

image.png

情况二

如树的结构,要删除“F”节点,

image.png

先找到“F”节点,

image.png

然后将“F”节点删除,此时导致了“C”节点和“G”节点的高度差超过1,需要做旋转操作,


image.png

而且因为C节点的左子节点高度比右子节点高度大,所以执行右单旋操作,旋转后为,


image.png

转自:https://blog.csdn.net/wangyangzhizhou/article/details/81529872

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容