CompletableFuture使用场景和原理

1.概述

CompletableFuture是jdk1.8引入的实现类。扩展了Future和CompletionStage,是一个可以在任务完成阶段触发一些操作Future。简单的来讲就是可以实现异步回调。

2.为什么引入CompletableFuture

对于jdk1.5的Future,虽然提供了异步处理任务的能力,但是获取结果的方式很不优雅,还是需要通过阻塞(或者轮训)的方式。如何避免阻塞呢?其实就是注册回调。

业界结合观察者模式实现异步回调。也就是当任务执行完成后去通知观察者。比如Netty的ChannelFuture,可以通过注册监听实现异步结果的处理。

通过addListener方法注册监听。如果任务完成,会调用notifyListeners通知。

CompletableFuture通过扩展Future,引入函数式编程,通过回调的方式去处理结果。

3.功能

CompletableFuture的功能主要体现在他的CompletionStage。

CompletableFuture借助CompletionStage的方法可以实现链式调用。并且可以选择同步或者异步两种方式。

这里举个简单的例子来体验一下他的功能。

public static void thenApply() {
    ExecutorService executorService = Executors.newFixedThreadPool(2);
    CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
        try {
            //  Thread.sleep(2000);
        } catch (Exception e) {
            e.printStackTrace();
        }
        System.out.println("supplyAsync " + Thread.currentThread().getName());
        return "hello";
    }, executorService).thenApplyAsync(s -> {
        System.out.println(s + "world");
        return "hhh";
    }, executorService);
    cf.thenRunAsync(() -> {
        System.out.println("ddddd");
    });
    cf.thenRun(() -> {
        System.out.println("ddddsd");
    });
    cf.thenRun(() -> {
        System.out.println(Thread.currentThread());
        System.out.println("dddaewdd");
    });
}

执行结果

supplyAsync pool-1-thread-1
helloworld
ddddd
ddddsd
Thread[main,5,main]
dddaewdd

根据结果我们可以看到会有序执行对应任务。

注意:

如果是同步执行cf.thenRun。他的执行线程可能main线程,也可能是执行源任务的线程。如果执行源任务的线程在main调用之前执行完了任务。那么cf.thenRun方法会由main线程调用。

这里说明一下,如果是同一任务的依赖任务有多个:

  1. 如果这些依赖任务都是同步执行。那么假如这些任务被当前调用线程(main)执行,则是有序执行,假如被执行源任务的线程执行,那么会是倒序执行。因为内部任务数据结构为LIFO。
  2. 如果这些依赖任务都是异步执行,那么他会通过异步线程池去执行任务。不能保证任务的执行顺序。

上面的结论是通过阅读源代码得到的。下面我们深入源代码。

3.源码追踪

创建CompletableFuture

创建的方法有很多,甚至可以直接new一个。我们来看一下supplyAsync异步创建的方法。

public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,
                                                   Executor executor) {
    return asyncSupplyStage(screenExecutor(executor), supplier);
}
static Executor screenExecutor(Executor e) {
    if (!useCommonPool && e == ForkJoinPool.commonPool())
        return asyncPool;
    if (e == null) throw new NullPointerException();
    return e;
}

入参Supplier,带返回值的函数。如果是异步方法,并且传递了执行器,那么会使用传入的执行器去执行任务。否则采用公共的ForkJoin并行线程池,如果不支持并行,新建一个线程去执行。

这里我们需要注意ForkJoin是通过守护线程去执行任务的。所以必须有非守护线程的存在才行。

asyncSupplyStage方法
static <U> CompletableFuture<U> asyncSupplyStage(Executor e,
                                                 Supplier<U> f) {
    if (f == null) throw new NullPointerException();
    CompletableFuture<U> d = new CompletableFuture<U>();
    e.execute(new AsyncSupply<U>(d, f));
    return d;
}

这里会创建一个用于返回的CompletableFuture。

然后构造一个AsyncSupply,并将创建的CompletableFuture作为构造参数传入。
那么,任务的执行完全依赖AsyncSupply。

AsyncSupply#run
public void run() {
    CompletableFuture<T> d; Supplier<T> f;
    if ((d = dep) != null && (f = fn) != null) {
        dep = null; fn = null;
        if (d.result == null) {
            try {
                d.completeValue(f.get());
            } catch (Throwable ex) {
                d.completeThrowable(ex);
            }
        }
        d.postComplete();
    }
}

1.该方法会调用Supplier的get方法。并将结果设置到CompletableFuture中。我们应该清楚这些操作都是在异步线程中调用的。

2.d.postComplete方法就是通知任务执行完成。触发后续依赖任务的执行,也就是实现CompletionStage的关键点。

在看postComplete方法之前我们先来看一下创建依赖任务的逻辑。

thenAcceptAsync方法

public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) {
    return uniAcceptStage(asyncPool, action);
}
private CompletableFuture<Void> uniAcceptStage(Executor e,
                                               Consumer<? super T> f) {
    if (f == null) throw new NullPointerException();
    CompletableFuture<Void> d = new CompletableFuture<Void>();
    if (e != null || !d.uniAccept(this, f, null)) {
        # 1
        UniAccept<T> c = new UniAccept<T>(e, d, this, f);
        push(c);
        c.tryFire(SYNC);
    }
    return d;
}

上面提到过。thenAcceptAsync是用来消费CompletableFuture的。该方法调用uniAcceptStage。

uniAcceptStage逻辑:
1.构造一个CompletableFuture,主要是为了链式调用。

2.如果为异步任务,直接返回。因为源任务结束后会触发异步线程执行对应逻辑。

3.如果为同步任务(e==null),会调用d.uniAccept方法。这个方法在这里逻辑:如果源任务完成,调用f,返回true。否则进入if代码块(Mark 1)。

4.如果是异步任务直接进入if(Mark 1)。

Mark1逻辑:

1.构造一个UniAccept,将其push入栈。这里通过CAS实现乐观锁实现。

2.调用c.tryFire方法。

final CompletableFuture<Void> tryFire(int mode) {
    CompletableFuture<Void> d; CompletableFuture<T> a;
    if ((d = dep) == null ||
        !d.uniAccept(a = src, fn, mode > 0 ? null : this))
        return null;
    dep = null; src = null; fn = null;
    return d.postFire(a, mode);
}

看完上面的逻辑,我们基本理解依赖任务的逻辑。

其实就是先判断源任务是否完成,如果完成,直接在对应线程执行以来任务(如果是同步,则在当前线程处理,否则在异步线程处理)

如果任务没有完成,直接返回,因为等任务完成之后会通过postComplete去触发调用依赖任务。

postComplete方法

final void postComplete() {
    /*
     * On each step, variable f holds current dependents to pop
     * and run.  It is extended along only one path at a time,
     * pushing others to avoid unbounded recursion.
     */
    CompletableFuture<?> f = this; Completion h;
    while ((h = f.stack) != null ||
           (f != this && (h = (f = this).stack) != null)) {
        CompletableFuture<?> d; Completion t;
        if (f.casStack(h, t = h.next)) {
            if (t != null) {
                if (f != this) {
                    pushStack(h);
                    continue;
                }
                h.next = null;    // detach
            }
            f = (d = h.tryFire(NESTED)) == null ? this : d;
        }
    }
}

在源任务完成之后会调用。

其实逻辑很简单,就是迭代堆栈的依赖任务。调用h.tryFire方法。NESTED就是为了避免递归死循环。因为FirePost会调用postComplete。如果是NESTED,则不调用。

堆栈的内容其实就是在依赖任务创建的时候加入进去的。上面我们已经提到过。

4.总结

基本上述源码已经分析了逻辑。

因为涉及异步等操作,我们需要理一下(这里针对全异步任务):

1.创建CompletableFuture成功之后会通过异步线程去执行对应任务。

2.如果CompletableFuture还有依赖任务(异步),会将任务加入到CompletableFuture的堆栈保存起来。以供后续完成后执行依赖任务。

当然,创建依赖任务并不只是将其加入堆栈。如果源任务在创建依赖任务的时候已经执行完成,那么当前线程会触发依赖任务的异步线程直接处理依赖任务。并且会告诉堆栈其他的依赖任务源任务已经完成。

主要是考虑代码的复用。所以逻辑相对难理解。

postComplete方法会被源任务线程执行完源任务后调用。同样也可能被依赖任务线程后调用。

执行依赖任务的方法主要就是靠tryFire方法。因为这个方法可能会被多种不同类型线程触发,所以逻辑也绕一点。(其他依赖任务线程、源任务线程、当前依赖任务线程)

如果是当前依赖任务线程,那么会执行依赖任务,并且会通知其他依赖任务。
如果是源任务线程,和其他依赖任务线程,则将任务转换给依赖线程去执行。不需要通知其他依赖任务,避免死递归。
不得不说Doug Lea的编码,真的是艺术。代码的复用性全体现在逻辑上了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容