MySQL 主从延迟,读写分离七种解决方案

一、强制走主库

针对不用的业务诉求,区别性对待。

场景一:

如果是对数据的 实时性 要求不是很高,比如:大V有千万粉丝,发布一条微博,粉丝晚几秒钟收到这条信息,并不会有特别大的影响。这时,可以走 从库。

场景二:

如果对数据的 实时性 要求非常高,比如金融类业务。我们可以在客户端代码标记下,让查询强制走主库。

二、从库延迟查询

由于主从库之间数据同步需要一定的时间间隔,那么有一种策略是延迟从从库查询数据。

比如:

selectsleep(1)select*fromorderwhereorder_id=11111;


在正式的业务查询时,先执行一个sleep 语句,给从库预留一定的数据同步缓冲期。

因为是采用一刀切,当面对高并发业务场景时,性能会下降的非常厉害,一般不推荐这个方案。

三、判断主从是否延迟?决定选主库还是从库

之前写过一篇文章 《京东一面:MySQL 主备延迟有哪些坑?主备切换策略 》。

有讲过 什么是主备延迟?、主备延迟的常见原因?

方案一:

在从库 执行 命令 show slave status。

查看 seconds_behind_master 的值,单位为秒,如果为 0,表示主备库之间无延迟。

方案二:

比较主从库的文件点位。

还是执行 show slave status,响应结果里有截个关键参数。

Master_Log_File 读到的主库最新文件。

Read_Master_Log_Pos 读到的主库最新文件的坐标位置。

Relay_Master_Log_File 从库执行到的最新文件。

Exec_Master_Log_Pos 从库执行到的最新文件的坐标位置。

两两比较,上面的参数是否相等。

方案三:

比较 GTID 集合。

Auto_Position=1 主从之间使用 GTID 协议。

Retrieved_Gtid_Set 从库收到的所有binlog日志的 GTID 集合。

Executed_Gtid_Set 从库已经执行完成的 GTID 集合。

比较 Retrieved_Gtid_Set 和 Executed_Gtid_Set 的值是否相等。

在执行业务SQL操作时,先判断从库是否已经同步最新数据。从而决定是操作主库,还是操作从库。

缺点:

无论采用上面哪一种方案,如果主库的写操作频繁不断,那么从库的值永远跟不上主库的值,那么读流量永远是打在了主库上。

针对这个问题,有什么解决方案?

这个问题跟 MQ消息队列 既要求高吞吐量又要保证顺序是一样的,从全局来看确实无解,但是缩小范围就容易多了,我们可以保证一个分区内的消息有序。

回到 主从库 之间的数据同步问题,从库查询哪条记录,我们只要保证之前对应的写binglog已经同步完数据即可,可以不用管主从库的所有的事务binlog 是否同步。

问题是不是一下简单多了。

四、从库节点判断主库位点

在从库执行下面命令,返回是一个正整数 M,表示从库从参数节点开始执行了多少个事务。


selectmaster_pos_wait(file,pos[,timeout]);


file 和 pos 表示主库上的文件名和位置。

timeout 可选, 表示这个函数最多等待 N 秒。

缺点:

master_pos_wait 返回结果无法与具体操作的数据行做关联,所以每次接收读请求时,从库还是无法确认是否已经同步数据,方案实用性不高。

五、比较 GTID

执行下面查询命令。

阻塞等待,直到从库执行的事务中包含 gtid_set,返回 0。

超时,返回 1。


selectwait_for_executed_gtid_set(gtid_set,1);


MySQL 5.7.6 版本开始,允许在执行完更新类事务后,把这个事务的 GTID 返回给客户端。具体操作,将参数session_track_gtids 设置为OWN_GTID,调用 API 接口mysql_session_track_get_first 返回结果解析出 GTID。

处理流程:

发起 写 SQL 操作,在主库成功执行后,返回这个事务的 GTID。

发起 读 SQL 操作时,先在从库执行 select wait_for_executed_gtid_set (gtid_set, 1)。

如果返回 0,表示已经从库已经同步了数据,可以在从库执行 查询 操作。

否则,在主库执行 查询 操作。

缺点:

跟上面的 master_pos_wait 类似,如果 写操作 与 读操作 没有上下文关联,那么 GTID 无法传递 。方案实用性不高。

六、引入缓存中间件

高并发系统,缓存作为性能优化利器,应用广泛。我们可以考虑引入缓存作为缓冲介质。

处理过程:

客户端 写 SQL ,操作主库。

同步将缓存中的数据删除。

当客户端读数据时,优先从缓存加载。

如果 缓存中没有,会强制查询主库预热数据。

缺点:

K-V 存储,适用一些简单的查询条件场景。如果复杂的查询,还是要查询从库。

七、数据分片

参考 Redis Cluster 模式, 集群网络拓扑通常是 3主 3从,主节点既负责写,也负责读。

通过水平分片,支持数据的横向扩展。由于每个节点都是独立的服务器,可以提高整体集群的吞吐量。

转换到数据库方面

常见的解决方式,是分库分表,每次读写都是操作主库的一个分表,从库只用来做数据备份。当主库发生故障时,主从切换,保证集群的高可用性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容