信息可视化该怎么玩?

如您所见,信息可视化 可以产生令人难以置信的美丽图像,高效的传达信息。下面的图像是现已解散的安然集团的通信组织图。


作者/版权所有者:Kitware Inc.版权条款和许可:CC BY-ND 2.0

Ben Shneiderman说: “可视化的目的是洞察力,而不是图片。”

那么,可视化是否有设计诀窍呢?Riccardo Mazza在他的书“Introduction to Information Visualization”中,为我们提供了一种信息可视化的5步设计法,我们一起来看看吧。

设计信息可视化的5个步骤

整个设计过程很简单,一旦你审查了这个过程,它应该是常识:

Ⅰ、定义问题

Ⅱ、定义要表示的数据

Ⅲ、定义表示数据所需的维度

Ⅳ、定义数据的结构

Ⅴ、定义可视化所需的交互

1.定义问题

与任何用户体验工作一样; 第一步是定义信息可视化将解决的问题。这通常需要一些用户研究 来回答问题; 

“我的用户需要什么呢?”

“他们将如何使用它?”

您可能正试图向用户解释某些内容,或者您可能正试图让他们建立新的联系或观察; 为了将问题定义清楚,您还应考虑用户群特有的任何特定因素,比如:他们的教育水平或数据处理能力如何?他们过去的数据有什么样的经验?这将指导输出的复杂程度,并阐明用户的整体需求。

2.定义要表示的数据

有三种主要类型的数据可以通过信息可视化来表示,它们的映射方式可能会有很大差异 --因此,在开始设计之前,在您的脑海中清楚地了解数据,您将使用哪些数据?

Ⅰ、定量数据 - 这是数值类的数据。

Ⅱ、序数据 - 非数值的,但具有内在顺序的数据。(例如,想想一周中的几天。)

Ⅲ、分类数据 - 既没有数字也没有内在顺序的数据。(例如商业名称或地名)。

3.定义表示数据所需的维度

必须仔细考虑数据集的维度或属性的数量,因为它将在很大程度上确定哪些数据可用于进行信息可视化。数据中表示的维度越多 - 理解信息可视化就越混乱。因此值得注意的是,具有大量维度的数据可能更适合使用高度交互式表示,不适合静态图形展示。可以根据要研究的相关维度的数量将分析分成四种类型:

Ⅰ、单变量分析 - 针对自变量研究单个因变量

Ⅱ、双变量分析 - 其中两个因变量针对自变量进行研究

Ⅲ、三变量分析 - 其中三个因变量针对自变量进行研究

Ⅳ、多变量分析 - 针对自变量研究三个以上的因变量

 作者/版权所有者:Chire。版权条款和许可:CC BY-SA 3.0

多变量分析的图像,其中数据点之间的关系很多且相关。

4.定义数据的结构

这是关于检查数据集如何相互关联的全部内容,常见的关系结构包括:

Ⅰ、线性关系 - 数据可以以线性格式显示,例如表格,向量等。

Ⅱ、时间关系 - 数据随着时间的推移而变化

Ⅲ、空间关系 - 与现实世界相关的数据(例如地图数据或办公室平面图)这有时也被称为地理关系

Ⅳ、分层关系 - 与定义的层次结构中的位置相关的数据(从办公室管理结构到简单的流程图)

Ⅴ、网络关系 - 数据与同一数据中的其他实体相关

 

作者/版权所有者:Nathanael Crawford。版权条款和许可:CC BY-SA 3.0

以上示出了分层网络模型的示例。

5.从可视化中定义所需的交互

设计过程的最后一部分要求您了解用户信息可视化所需的交互级别。有三类互动:

Ⅰ、静态模型 - 这些模型按“原样”显示,例如您保存在汽车中的道路地图集中的地图。用户无法修改它们。

Ⅱ、可转换模型 - 这些模型使用户能够转换或修改数据。它们可以允许用户改变用于分析的参数或者为数据集选择不同形式的视觉映射。

Ⅲ、可操作模型 - 数据有时候是高度关联的,通过操作部分数据图形,可以获得关联数据的变化,从而产生新的见解是一种常见的互操作方法。例如:我们可以通过DataFocus快捷创建图形的联动操作。


作者/版权所有者:www.datafocus.ai。版权条款和许可:CC BY-SA 3.0

 高维、复杂的数据关系, 可以拆分成多个图形通过联动增加交互。

小贴士:设计信息可视化的过程可能与您的最终输出并不直接相关,但可以使您更加明智地决定何种表示形式最适合您的用户。通过充分了解用户的需求,以及他们需要展示的数据、数据中的关系和模型类型,信息可视化设计师可以提供充分满足这些需求的可视化作品。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容

  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,967评论 6 13
  • 概述及标签体系搭建 1 概述 随着信息技术的迅速发展和信息内容的日益增长,“信息过载”问题愈来愈严重,愈发带来很大...
    JinkeyAI阅读 22,792评论 10 241
  • 早晨五点半起床,洗刷完毕六点半从深圳出发顺德。两小时后到达好朋友家里,毕业以来第一次跑来她家,因为好朋友结婚、首胎...
    跳跳飞鱼阅读 323评论 2 1
  • <<非暴力沟通>> P38 在一次研讨会中,一位大学生说,室友将音响的声音放得很大,他怎么也睡不着. 我询问他当时...
    Fly_Catkin阅读 179评论 0 0
  • 如果生活是一种错觉,我宁愿封闭我的知觉,换取一种永恒的安详。我用梦构筑循环往复的四季;音乐是一种风,来自海上而未曾...
    深海的鲸看不见鱼阅读 111评论 0 0