k-MEANS

Python中 list和np.array的区别:

data=[[1,2,3,4],
      [2,1,3,4],
      [1,0,0,1]]

data[:,0]
列表的索引必须是整数,而这里是tuple类型(:,1),所以出现了错误,只有矩阵才能通过这样的方式索引,因此我们常常需要将数据转换为矩阵:data[:,0]

data=mat([[1,2,3,4],
      [2,1,3,4],
      [1,0,0,1]])
feature1=data[:,0]

kMeans.py

#!/usr/bin/python
# -*- coding: utf-8 -*-
from numpy import *
import time
import matplotlib.pyplot as plt
def loadDataSet(filename):
    '''
    读取文件,返回的是list
    :param filename:
    :return:
    '''
    dataMat =[]
    fr = open(filename)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float, curLine)
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA,vecB):
    '''
    计算欧氏距离
    :param vecA:
    :param vecB:
    :return:
    '''
    return sqrt(sum(power(vecA - vecB, 2)))

def randCent(dataSet,k):
    '''
    随机初始化质心
    :param dataSet:
    :param k:
    :return:
    '''
    n = shape(dataSet)[1]
    centroids = mat(zeros((k, n)))
    for j in range(n):
        minJ = min(dataSet[:, j])
        rangeJ =  float(max(dataSet[:, j]) - minJ)
        centroids[:, j] = minJ + rangeJ * random.rand(k, 1)
    return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]  #dataSet有80行 2列, m=80
    clusterAssment = mat(zeros((m, 2)))#簇,用于存每个点的簇分类结果,1:簇索引 2:该点到簇质心的误差
    centroids = createCent(dataSet, k)  #得到质心
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m): #循环80次
            minDist = inf; minIndex = -1
            for j in range(k): #分别计算每个点到四个质心的距离,并将误差最大值付给minDist 索引付给minIndex
                distJI = distMeas(centroids[j, :], dataSet[i, :])
                if distJI < minDist:
                    minDist = distJI;minIndex = j
            if clusterAssment[i, 0] != minIndex:    #clusterAssment初始化80行 2列 全0
                clusterChanged = True
            clusterAssment[i, :] = minIndex, minDist**2
        print centroids
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]]#获得同簇所有元素的在dataSet中的下标 .A是矩阵展成数组
            centroids[cent, :] = mean(ptsInClust, axis=0) #同簇元素求平均值得到质心
    return centroids, clusterAssment


def showCluster(dataSet, k, centroids, clusterAssment):
    numSamples, dim = dataSet.shape
    if dim != 2:
        print ("Sorry! I can not draw because the dimension of your data is not 2!")
        return 1

    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
    if k > len(mark):
        print ("Sorry! Your k is too large! ")
        return 1


    # draw all samples
    for i in range(numSamples):
        markIndex = int(clusterAssment[i, 0])  #为样本指定颜色
        plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])

    mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
    # draw the centroids
    for i in range(k):
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)

    plt.show()

demo.py

import kMeans
from numpy import *
datMat = mat(kMeans.loadDataSet('testSet.txt'))
myCentroids, myClusterAssements = kMeans.kMeans(datMat, 4)
print shape(myClusterAssements)

kMeans.showCluster(datMat, 4, myCentroids, myClusterAssements)
Figure_1.png

Figure_2.png

由figure2可知,上面的k-means算法会有陷入局部最优解的情况。ClusterAssements的第一列是每个点到质心的误差,同簇数据的误差求取平均值就是SSE(SUM OF SQUARED ERROR)——————衡量聚类效果标准

改进的方法
1:合并最近的质心
2:合并时SSE增幅最小的质心

引出二分K-MEANS算法:
1.首先将所有数据当作一个簇
2.将每一个点都送入k-means进行k=2聚类
3.分别计算SSE,将SSE的在进行K=2聚类,直到最终的K要求

def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList =[centroid0] #create a list with one centroid
    for j in range(m):#calc initial Error
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print 'the bestCentToSplit is: ',bestCentToSplit
        print 'the len of bestClustAss is: ', len(bestClustAss)
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
    return mat(centList), clusterAssment

k-means的思想还是比较容易理解的:
1.创建起始质心 2.计算数据到质心距离并对数据进行分配 3。同簇数据求均值得到质心

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容