[Leedcode][JAVA][面试第40题][最小的k个数][快选][堆][BST]

【问题描述】面试第40题 最小的k个数

输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 :
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
0 <= k <= arr.length <= 10000
0 <= arr[i] <= 10000

【解答思路】

1. Arrays.sort
  • 需要先把该数组排序(从小到大)。
  • 截取前k个数返回需要的数组。
    时间复杂度:O(N^2) 空间复杂度:O(N)
class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        Arrays.sort(arr);
        int[] a = new int[k] ;
        /*
        for(int j = 0; j <  k ; j++){
            a[j] = arr[j];
        }
        */
        System.arraycopy(arr, 0, a, 0, k);
        return a;
        //return Arrays.copyOfRange(arr, 0, k);
    }
}
2. 堆

使用堆数据结构来辅助得到最小的 k 个数。堆的性质是每次可以找出最大或最小的元素。我们可以使用一个大小为 k 的最大堆(大顶堆),将数组中的元素依次入堆,当堆的大小超过 k 时,便将多出的元素从堆顶弹

时间复杂度:O(Nlogk) 空间复杂度:O(k)
使用了一个大小为 k 的堆

public int[] getLeastNumbers(int[] arr, int k) {
    if (k == 0) {
        return new int[0];
    }
    // 使用一个最大堆(大顶堆)
    // Java 的 PriorityQueue 默认是小顶堆,添加 comparator 参数使其变成最大堆
    Queue<Integer> heap = new PriorityQueue<>(k, (i1, i2) -> Integer.compare(i2, i1));

    for (int e : arr) {
        // 当前数字小于堆顶元素才会入堆
        if (heap.isEmpty() || heap.size() < k || e < heap.peek()) {
            heap.offer(e);
        }
        if (heap.size() > k) {
            heap.poll(); // 删除堆顶最大元素
        }
    }

    // 将堆中的元素存入数组
    int[] res = new int[heap.size()];
    int j = 0;
    for (int e : heap) {
        res[j++] = e;
    }
    return res;
}

作者:nettee
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/tu-jie-top-k-wen-ti-de-liang-chong-jie-fa-you-lie-/

3. 快排变形
  • “查找第 k 大的元素”是一类算法问题,称为选择问题。
  • 找第 k 大的数,或者找前 k 大的数,有一个经典的 quick select(快速选择)算法。
  • 这个名字和 quick sort(快速排序)很像,算法的思想也和快速排序类似,都是分治法的思想
partition

时间复杂度:期望O(N) 最坏O(N^2) 空间复杂度:O(1)

public int[] getLeastNumbers(int[] arr, int k) {
    if (k == 0) {
        return new int[0];
    } else if (arr.length <= k) {
        return arr;
    }
    
    // 原地不断划分数组
    partitionArray(arr, 0, arr.length - 1, k);
    
    // 数组的前 k 个数此时就是最小的 k 个数,将其存入结果
    int[] res = new int[k];
    for (int i = 0; i < k; i++) {
        res[i] = arr[i];
    }
    return res;
}

void partitionArray(int[] arr, int lo, int hi, int k) {
    // 做一次 partition 操作
    int m = partition(arr, lo, hi);
    // 此时数组前 m 个数,就是最小的 m 个数
    if (k == m) {
        // 正好找到最小的 k(m) 个数
        return;
    } else if (k < m) {
        // 最小的 k 个数一定在前 m 个数中,递归划分
        partitionArray(arr, lo, m-1, k);
    } else {
        // 在右侧数组中寻找最小的 k-m 个数
        partitionArray(arr, m+1, hi, k);
    }
}

// partition 函数和快速排序中相同,具体可参考快速排序相关的资料
// 代码参考 Sedgewick 的《算法4》
int partition(int[] a, int lo, int hi) {
    int i = lo;
    int j = hi + 1;
    int v = a[lo];
    while (true) { 
        while (a[++i] < v) {
            if (i == hi) {
                break;
            }
        }
        while (a[--j] > v) {
            if (j == lo) {
                break;
            }
        }

        if (i >= j) {
            break;
        }
        swap(a, i, j);
    }
    swap(a, lo, j);

    // a[lo .. j-1] <= a[j] <= a[j+1 .. hi]
    return j;
}

void swap(int[] a, int i, int j) {
    int temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}

作者:nettee
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/tu-jie-top-k-wen-ti-de-liang-chong-jie-fa-you-lie-/

4. 计数排序

时间复杂度:O(N) 空间复杂度:O(N)

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // 统计每个数字出现的次数
        int[] counter = new int[10001];
        for (int num: arr) {
            counter[num]++;
        }
        // 根据counter数组从头找出k个数作为返回结果
        int[] res = new int[k];
        int idx = 0;
        for (int num = 0; num < counter.length; num++) {
            while (counter[num]-- > 0 && idx < k) {
                res[idx++] = num;
            }
            if (idx == k) {
                break;
            }
        }
        return res;
    }
}

作者:sweetiee
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/3chong-jie-fa-miao-sha-topkkuai-pai-dui-er-cha-sou/

5. 二叉搜索树BST(前K大有序)
class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // TreeMap的key是数字, value是该数字的个数。
        // cnt表示当前map总共存了多少个数字。
        TreeMap<Integer, Integer> map = new TreeMap<>();
        int cnt = 0;
        for (int num: arr) {
            // 1. 遍历数组,若当前map中的数字个数小于k,则map中当前数字对应个数+1
            if (cnt < k) {
                map.put(num, map.getOrDefault(num, 0) + 1);
                cnt++;
                continue;
            } 
            // 2. 否则,取出map中最大的Key(即最大的数字), 判断当前数字与map中最大数字的大小关系:
            //    若当前数字比map中最大的数字还大,就直接忽略;
            //    若当前数字比map中最大的数字小,则将当前数字加入map中,并将map中的最大数字的个数-1。
            Map.Entry<Integer, Integer> entry = map.lastEntry();
            if (entry.getKey() > num) {
                map.put(num, map.getOrDefault(num, 0) + 1);
                if (entry.getValue() == 1) {
                    map.pollLastEntry();
                } else {
                    map.put(entry.getKey(), entry.getValue() - 1);
                }
            }
            
        }

        // 最后返回map中的元素
        int[] res = new int[k];
        int idx = 0;
        for (Map.Entry<Integer, Integer> entry: map.entrySet()) {
            int freq = entry.getValue();
            while (freq-- > 0) {
                res[idx++] = entry.getKey();
            }
        }
        return res;
    }
}

作者:sweetiee
链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/3chong-jie-fa-miao-sha-topkkuai-pai-dui-er-cha-sou/

时间复杂度:O(NlogN) 空间复杂度:O(N)

【总结】

1.堆/快速选择比较

看起来分治法的快速选择算法的时间、空间复杂度都优于使用堆的方法,但是要注意到快速选择算法的几点局限性:

  • 算法需要修改原数组,如果原数组不能修改的话,还需要拷贝一份数组,空间复杂度就上去了。
  • 算法需要保存所有的数据。如果把数据看成输入流的话,使用堆的方法是来一个处理一个,不需要保存数据,只需要保存 k 个元素的最大堆。而快速选择的方法需要先保存下来所有的数据,再运行算法。当数据量非常大的时候,甚至内存都放不下的时候,就麻烦了。所以当数据量大的时候还是用基于堆的方法比较好
2. 一题多解 按照自己的掌握情况选择 熟悉or了解

参考链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/tu-jie-top-k-wen-ti-de-liang-chong-jie-fa-you-lie-/

参考链接:https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/3chong-jie-fa-miao-sha-topkkuai-pai-dui-er-cha-sou/

image.png

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容