计算机毕业设计Python电影评论情感分析 电影可视化 豆瓣电影爬虫 电影推荐系统 电影数据分析 电影大数据 大数据毕业设计 机器学习 深度学习 知识图谱 人工智能 Hadoop Spark

一、项目简介

在大数据与人工智能技术蓬勃发展的背景下,我们精心打造了一款基于Python的豆瓣电影数据分析与可视化系统,致力于为电影爱好者与专业人士提供全方位、个性化的观影服务体验。现今,人们对电影欣赏的需求已超越单一的娱乐诉求,转而追求个性化推荐、深度解读及社区互动的综合体验。
该系统构筑了涵盖数据采集、数据概览、电影检索、数据管理、词云分析及多维可视化六大支柱的立体服务矩阵。首先,系统从豆瓣电影平台抓取包括影片详情、评分、评论、标签等在内的丰富信息,确保数据获取的针对性与合规性。
系统对所采集的电影数据进行整合与梳理,生成简洁明了的数据概览报告,概述整体数据集的特征,如平均评分、热门类型、高分导演与演员等关键指标。同时,用户可利用强大且灵活的查询功能,依据影片名称、关键词、导演、演员、类型、上映年份等多维度条件,快速定位感兴趣的内容。
平台提供电影数据的精细化管理功能,用户可对已获取的数据进行编辑操作,便于个性化整理与长期跟踪。此外,系统引入词云图这一可视化工具,生动呈现电影标题、演员、评分、简介等文本数据中的高频词汇与主题热点,直观揭示观众关注焦点与市场趋势。
系统集成了一系列深度可视化的组件,对电影数据进行全方位、多层次的解析与展示如时间序列分析、地理分析、类型分析、导演与演员分析等
通过整合Python的Flask框架、MySQL数据库以及NumPy、Pandas、Matplotlib等数据分析与可视化库,我们的豆瓣电影数据分析与可视化系统不仅具备强大的数据处理与分析能力,还能够为用户提供流畅、直观且富有洞察力的交互体验,让电影爱好者与专业人士在轻松的浏览过程中,深度感知电影市场的脉动与趋势。
综上所述,基于Python的豆瓣电影数据分析与可视化系统,凭借数据采集、数据概览、电影查询、数据管理、词云图展示以多维度可视化分析,构建了一个满足用户个性化需求、促进深度参与的电影数据探索平台。无论是资深影迷还是偶尔观影的大众用户,都能在这个系统中发掘电影世界的新视角,深化对电影艺术与市场的认知。

二、开发环境

开发环境 版本/工具
PYTHON 3.6.8
开发工具 PyCharm
操作系统 Windows 10
内存要求 8GB 以上
浏览器 Firefox (推荐)、Google Chrome (推荐)、Edge
数据库 MySQL 8.0 (推荐)
数据库工具 Navicat Premium 15 (推荐)
项目框架 FLASK

三、项目技术

后端:Flask、PyMySQL、MySQL、urllib
前端:Jinja2、Jquery、Ajax、layui

四、功能结构

数据采集:利用Python编程技术对抓取豆瓣电影数据,包括影片基本信息(如标题、年份、类型)、主创团队、评分、评论、简介等多元信息。
数据概览:收集的电影数据经过清洗、整合后,平台自动生成详尽的数据概览报告,包括但不限于最高评分、评分折线图、最受欢迎类型、电影种类数、热门演员等统计摘要。这些概览有助于用户快速理解数据集的整体特征与市场趋势。
信息检索:平台提供用户友好的搜索接口,支持用户根据影片名称、关键词条件进行精确或模糊查询,迅速定位目标电影及相关信息,满足个性化研究与兴趣探索需求。
数据管理:对已获取的电影数据进行删除功能,以及对电影的图片、主演等属性的管理。
词云分析:平台运用词云图技术,动态展示电影标题、演员、评分、简介等文本数据中的高频词汇,直观呈现热门话题、明星影响力、观众情感倾向等文本特征。
数据可视化:平台搭载丰富多样的可视化图表,对电影数据进行深度解析。
时间分析:通过折线图展示历年电影产量统计随年份的变化趋势;通过饼状图展示电影数据时长分布占比。
评分分析:通过选择不同的类型,展示该类型电影评分统计;豆瓣年度评价评分柱状图;豆瓣电影中外评分分布图;不同的电影豆瓣评分星级饼状图
地图分析:通过柱状图展示电影拍摄地点统计,通过饼状图展示电影语言统计
类型分析:通过饼图展示各电影类型在总数据中的占比。
导演与演员分析:通过柱状图展示导演作品数量前20,通过折线图展示演员参演排名前20


0.png

运行截图

2.png
3.png
4.png
5.png
6.png
7.png
8.png
9.png
10.png
11.png
12.png
13.png
14.png
15.png
16.png
17.png
18.png
19.png
20.png
21.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容