Qt下使用Halcon实现采图时自动对焦的功能(Brenner梯度法)

1、介绍

在机器视觉的开发中,现在有很多通过电机去做相机的聚焦调节,对比手工调节,自动调节效果更好,而且其也能满足设备自动的需求,尤其在一些高倍成像的环境下应用场景更广泛,图像清晰度是衡量图像质量的一个重要的指标,手动调焦的过程是通过人为去判定图像的清晰度,调节镜头的焦距,使得图像从模糊到清洗,再到模糊的过程,确定清洗度的峰值,自动调焦就是通过算法对采集的每一张图像的清晰度进行评价,最终给出图像清晰的峰值,从而确定调焦获取的焦距最佳。
常见的图像清晰度评价一般都是基于梯度的方法,本文主要介绍Brenner梯度法。


Brenner梯度法.jpg

本节使用了30张不同清晰度的图像来模拟相机采图时从对焦模糊到清晰再到模糊的过程。

2、实现方法

2.1 算法实现过程

void MainWindow::AutoFocus(HObject ho_Image)
{
 
    HObject  ho_ImagePart00, ho_ImagePart20;
    HObject  ho_ImageSub, ho_ImageResult, ho_ImagePart01, ho_ImagePart10;
    HObject  ho_ImageSub1, ho_ImageResult1, ho_ImageSub2, ho_ImageResult2;

    HTuple  hv_I, hv_Width, hv_Height, hv_WindowID;
    HTuple  hv_Value, hv_Deviation;
    try
    {
        GetImageSize(ho_Image,&hv_Width,&hv_Height);
        CropPart(ho_Image, &ho_ImagePart00, 0, 0, hv_Width, hv_Height-2);
        ConvertImageType(ho_ImagePart00, &ho_ImagePart00, "real");
        CropPart(ho_Image, &ho_ImagePart20, 2, 0, hv_Width, hv_Height-2);
        ConvertImageType(ho_ImagePart20, &ho_ImagePart20, "real");
        SubImage(ho_ImagePart20, ho_ImagePart00, &ho_ImageSub, 1, 0);
        MultImage(ho_ImageSub, ho_ImageSub, &ho_ImageResult, 1, 0);
        Intensity(ho_ImageResult, ho_ImageResult, &hv_Value, &hv_Deviation);

        double d=hv_Deviation.D();
        QString strDev=QString::number(d,'f',3);
        ui->labDev->setText(strDev);

        //记录最大偏差值
        if(hv_PreDeviation<hv_Deviation)
        {
            hv_PreDeviation=hv_Deviation;
        }
    }
    catch(HalconCpp::HException &except)
    {
        qDebug()<<except.ProcName().Text()<<endl;
        qDebug()<<except.ErrorMessage().Text()<<endl;
        qDebug()<<except.ErrorCode()<<endl;
    }
}

如Brenner算法的公式所示,首先将图像转换成real类型,然后对图像进行图像差处理,然后进行图像乘积,最后获得平均值及偏差,把偏差作为清晰度的评价参数

2.2 模拟采集流程

这里创建一个线程,然后使用延时的定时器,从文件夹中依次读取30张图像,每张图像进行Brenner算法处理。
线程定义如下:

    camera = new CameraCtrl();
    liveThread = new QThread();
    camera->moveToThread(liveThread);
    connect(liveThread,&QThread::finished,camera,&QObject::deleteLater);
    connect(this,&MainWindow::ContinuousGrab,camera,&CameraCtrl::HandleContinuousGrab);
    liveThread->start();

然后线程开始后进行连续读取图像处理流程

//读取图像并调用Brenner算法函数
void CameraCtrl::HandleContinuousGrab()
{    
    HTuple  hv_I;
    HObject  ho_Image;    
    for (hv_I=1; hv_I<=30; hv_I+=1)
    {
        ReadImage(&ho_Image, ("E:/Qt_Test/AutoFacus/Buddha/"+hv_I)+".png");
        Delay_MSec(tInter);
        emit hobjectReady(ho_Image);
        if(isFocus==true)
        {
            emit hobjectFocus(ho_Image);
        }
    }
}

其中定义延时定时器

void CameraCtrl::Delay_MSec(unsigned int msec)
{
    QEventLoop loop;//定义一个新的事件循环
    QTimer::singleShot(msec, &loop, SLOT(quit()));//创建单次定时器,槽函数为事件循环的退出函数
    loop.exec();//事件循环开始执行,程序会卡在这里,直到定时时间到,本循环被退出
}

3、总结

一个好的评价函数需要具有单峰性,无偏性,灵敏性,常见的图像清晰度评价的算法有多种,比如Brenner梯度法、Tenegrad梯度法、laplace梯度法、方差法、能量梯度法等等,本节只介绍了Brenner梯度法,目前反馈的Brenner梯度法效果较好,以后有机会会介绍一下其他的方法。


5.AutoFacus.PNG
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容