来自知乎的回答:
1. 分类问题中,输出不仅仅只允许取两个值,可以允许多个值,它是离散的;而在回归问题中,输出可取任意实数,是连续的。
2.
分类和回归的区别在于输出变量的类型。
定量输出称为回归,或者说是连续变量预测;
定性输出称为分类,或者说是离散变量预测。
举个例子:
预测明天的气温是多少度,这是一个回归任务;
预测明天是阴、晴还是雨,就是一个分类任务。
3:
分类基本上都是用“回归模型”解决的,只是假设的模型不同(损失函数不一样),因为不能把分类标签当回归问题的输出来解决。比如,最小二乘拟合曲线与最小二乘二分类,单层logistc神经网拟合曲线与logistc回归二分类,它们在设置上就是一些小trick。
来自 https://my.oschina.net/zzw922cn/blog/544221?p=1
本文主要介绍了回归问题与分类问题的不同应用场景以及它们训练算法的不同之处。
回归与分类的不同
1.回归问题的应用场景
回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。另外,回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。回归是对真实值的一种逼近预测。
2.分类问题的应用场景
分类问题是用于将事物打上一个标签,通常结果为离散值。例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。最常见的分类方法是逻辑回归,或者叫逻辑分类。
(回归的方法可以做分类,反之不行!)
逻辑回归:y=sigmoid(w'x)
线性回归:y=w'x
也就是逻辑回归比线性回归多了一个sigmoid函数,sigmoid(x)=1/(1+exp(-x)),其实就是对x进行归一化操作,使得sigmoid(x)位于0~1
逻辑回归通常用于二分类模型,目标函数是二类交叉熵,y的值表示属于第1类的概率,用户可以自己设置一个分类阈值。
线性回归用来拟合数据,目标函数是平法和误差
3.如何选择模型
下面一幅图可以告诉实际应用中我们如何选择合适的模型。