D11-多组率比较的卡方检验

分类数据除了2*2的交叉表之外,还有诸多其他形式,比如多组率的比较、2组构成比的比较、甚至多组构成比的比较。

它们数据结构更为复杂,虽都采用卡方检验为主要方法,但细节方面与两组率的分析上有所区别。

多行多列交叉表数据的分析,或者说多个率、构成比,乃至两个构成比的比较,四格表资料的分析策略一样,均可以考虑卡方和Fisher确切概率方法进行。

第一,多行多列交叉表分析没有校正卡方。具体应用条件如下:

1.不超过20%单元格的理论频数(期望频数)T < 5时,可使用卡方检验进行比较。

不超过20%的T < 5,卡方检验

2.如果超过20%单元格的理论频数(期望频数)T < 5,或者至少一个T<1,此时采用的是Fisher确切概率法。

超过20%单元格的T < 5至少1个T <1 ,Fisher确切概率法

第二,多个率、多个构成比的卡方检验存在多重比较的步骤

多个率、多个构成成比较,就如方差分析一样,当P≤0.05时,只能说明总体上存在着统计学差异,还不能说任意两组都有差异,需要多重比较进行进一步分析。

spss操作

分析-描述统计 -交叉表

在“交叉表”对话框中,分别选择分组变量和结局变量到“行”和“列”中。

①、②:行” 和 “列”分别放哪个变量没有规定,结果是一致的(分组变量可以放“行” ,也可以放“列”中)。

③ 精确:点击选择“精确”选项,进行Fisher确切法检验

④统计:选择“卡方”,进行卡方检验

⑤单元格:选择计算百分比中的行与列,不必同时选择,选择一项即可。一般建议与交叉表的分组变量所在的”行”“列”位置一致。

结果主要为2张表格。

第1表:分组统计描述结果,分别给出各处理组的结局,包括发生数以及相应的百分比。

第2表:卡方和Fisher确切检验的结果。该结果同时展示了卡方、和Fisher确切概率分析结果(无校正卡方),也显示了总样本量、理论(期望)频数的情况。

注释a将决定采用卡方检验还是Fisher确切概率法

卡方检验

不超过20%的格子理论频数(期望频数)T < 5时,选择第一行的“皮尔逊卡方”,得到卡方值①,选择P值(渐进显著性双侧)②。

Fisher确切概率法

如果超过20%的格子理论频数(期望频数)T < 5,或者至少一个T<1,选择第三行的“费希尔精确检验”,选择P值(精确显著性双侧)①。

卡方检验多重比较

多组比较,无论均数、还是率、还是构成比,均有多重比较的方式。所谓多重比较,简单来说就是两两比较。

比如3*2交叉表,即3行2列数据,3个率的比较

多次同时两两比较会增加一类错误的概率,导致假阳性率偏高!

一般控制假阳性率的方法有两个,一个是软件自带的方法,一个是a分割的方法。

在SPSS具体操作上,卡方检验多重比较也采用类似两种方法。一种是软件自带的Bonferroni 方法,一种是人工a分割方法(其实两种方法结果一致)。前者方法简单,但在SPSS结果表达上反而有些时候不好理解。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,063评论 6 510
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,805评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,403评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,110评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,130评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,877评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,533评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,429评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,947评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,078评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,204评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,894评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,546评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,086评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,195评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,519评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,198评论 2 357

推荐阅读更多精彩内容