如何搞定熵权topsis?

一、分析前准备

1.研究背景

TOPSIS法用于研究评价对象与‘理想解’的距离情况,结合‘理想解’(正理想解和负理想解),计算得到最终接近程度C值。熵权TOPSIS法核心在于TOPSIS,但在计算数据时,首先会利用熵值(熵权法)计算得到各评价指标的权重,并且将评价指标数据与权重相乘,得到新的数据,利用新数据进行TOPSIS法研究。

通俗地讲,熵权TOPSIS法是先使用熵权法得到新数据newdata(数据成熵权法计算得到的权重),然后利用新数据newdata进行TOPSIS法研究。

例如:当前有一个项目进行招标,共有4个承包商,分别是A,B,C,D厂。由于招标需要考虑多个因素,各个方案指标的优劣程度也并不统一。为了保证评价过程中的客观、公正性。因此,考虑通过熵权TOPSIS法,对各个方案进行综合评价,从而选出最优方案。

2.数据格式

熵权TOPSIS法用于研究指标与理想解的接近度情况。1个指标占用1列数据。1个研究对象为1行,但研究对象在分析时并不需要使用,SPSSAU默认会从上到下依次编号。

二、SPSSAU操作

(1)登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

(2)拖拽分析项

在“综合评价”模块中选择“熵权topsis”方法,将分析项拖拽到右侧分析框中,点击“开始分析”即可。

三、SPSSAU数据处理

1.数据正向化/逆向化处理

如果数据中有逆向指标(数字越大反而越不好的意思),此时需要使用‘SPSSAU数据处理->生成变量’的‘逆向化’功能处理。让数据变成正向指标(即数字越大越好的意思)。

‘逆向化’的数据计算公式为:(Max-X)/(Max-Min),明显可以看出,针对逆向指标进行‘逆向化’处理后,数据就会变成正向指标。

【SPSSAU】数据无量纲化处理 | 数据分析常见问题解答

2.数据标准化处理

针对数据进行标准化处理,目的在于解决量纲化问题。常见的标准化处理方法有:‘归一化’,‘区间化’,‘均值化’等。

(1)‘归一化’将所有数据压缩在0到1之间;

(2)‘区间化‘将所有数据压缩在自己设定的区间;

(3)‘均值化’= 当前值 / 平均值。

补充说明:

一般而言,如果数据全部都大于0,建议使用‘均值化’;如果数据中有负数或者0,建议做‘区间化’让数据限定在一个区间(SPSSAU默认1~2之间);当然也可以考虑‘归一化’,让数据全部介于0~1之间。

具体标准化的处理方式有很多种,具体结合文献和自身数据选择使用即可。不同的处理方式肯定会带来不同的结果,但结论一般不会有太大的偏倚。

(如果数据进行了正/逆向化处理就不需要再进行标准化处理。)

四、SPSSAU分析

背景:当前有6个国家经济技术开发区,分别在政务系统的4个指标上的评分值。数字越大表示指标越优。当前希望利用熵权TOPSIS法评价出6个开发区的政务系统排名情况。原始数据如下:

本案例数据中包括4个政务系统的评价指标,而且全部都是正向指标,因此不需要进行正向化或者逆向化处理。以及接着数据标准化解决量纲问题上,本例子使用‘均值化’处理方法。操作为SPSSAU数据处理->生成变量:

完成数据‘均值化’处理后,直接开始进行‘熵值TOPSIS法’分析,操作如下图:

1.熵值法计算权重结果汇总

上表格展示出4个政务系统指标的权重值,明显可以看出指标3的权重更大。但权重大小仅仅是过程值,熵值TOPSIS分析重心在于TOPSIS法计算出相对接近度。权重值与数据相乘,得到新数据newdata,这一过程是SPSSAU自动完成,利用newdata进行TOPSIS法计算。

2.TOPSIS评价计算结果

从上表可知,利用熵权法后加权生成的数据(算法自动完成)进行TOPSIS分析,针对4个指标(MC_政务系统指标1, MC_政务系统指标2, MC_政务系统指标3, MC_政务系统指标4),进行TOPSIS评价,同时评价对象为6个(样本量数量即为评价对象数量);

TOPSIS法首先找出评价指标的正负理想解值(A+和A-),接着计算出各评价对象分别与正负理想解的距离值D+和D-。根据D+和D-值,最终计算得出各评价对象与最优方案的接近程度(C值),并可针对C值进行排序。

最终从上表可知:评价对象4,即开发区4,它的相对接近度C值最高为0.9995,因而说明开发区4在政务系统上的表现最优;其次是开发区3,相对接近度C起来0.8141。开发区1的政务系统表现最差。

3.正负理想解


4.描述统计


分析数据完整并无缺失等,可通过上表格查看各分析项的平均值或标准差值等。从上表格可以看出四个分析项的样本量均为6,平均值均为1。

五、其他说明

1.如果分析数据中有负数或者0值如何办?

如果分析数据有负数或者0,这会导致无法进行熵值法计算,SPSSAU算法默认会进行‘非负平移’处理。SPSSAU非负平移功能是指,如果某列(某指标)数据出现小于等于0,则让该列数据同时加上一个‘平移值’(该值为某列数据最小值的绝对值+0.01),以便让数据全部都大于0,因而满足算法要求。

2. 面板数据如何进行熵值TOPSIS法?

熵值TOPSIS法的原理是先进行熵值法,然后再进行TOPSIS法。无论是面板或者非面板数据,均可正常进行熵值TOPSIS法研究,并不需要特别处理。(当然面板数据进行分析时,也可以先筛选出不同的年份,重复进行多次均可)。

六、总结

熵权TOPSIS法分别涉及熵权法和TOPSIS法;熵权法计算各评价指标的权重值,然后利用权重值乘原始数据,得到newdata。系统利用newdata进行TOPSIS法进行计算,最终得到各评价对象的接近程序C值,用于判断和衡量评价对象的优劣排序等。


今天的分享就到这里啦,更多干货请前往SPSSAU官网查看。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容