Spark常用Actions算子

介绍以下Actions算子:
foreach
foreachPatition
reduce
collect
count
first
take
takeSample
top
takeOrdered
saveAsTextFile
saveAsSequenceFile
saveAsObjectFile
countByKey
countByValue
aggregate


(1) foreach、foreachPatition

  • foreach:遍历RDD中的元素
  • foreachPatition:按照分区遍历RDD中的元素
    val arr = Array(1,2,3,4,5,6)
    val rdd = sc.makeRDD(arr,2)

    rdd.foreach(x => {
      println("===========")
      println(x)
    })
    /*
    ===========
    1
    ===========
    2
    ===========
    3
    ===========
    4
    ===========
    5
    ===========
    6
     */

    rdd.foreachPartition(x => {
      println("===========")
      while(x.hasNext) {
        println(x.next())
      }
    })
    /*
    ===========
    1
    2
    3
    ===========
    4
    5
    6
     */

    }

(2) reduce:按照指定规则聚合RDD中的元素

val numArr = Array(1,2,3,4,5)
val rdd = sc.parallelize(numArr)
val sum = rdd.reduce(_+_)
println(sum)
/*
15
*/

(3) collect:计算结果拉取回Driver端

val numArr = Array((1,1),(1,2),(1,3),(2,1),(2,2),(2,3))
val rdd = sc.parallelize(numArr)
val sum = rdd.reduceByKey(_+_)

sum.collect().foreach(println)
/*
(1,6)
(2,6)
 */

(4) count、countByKey、countByValue

count:统计RDD中元素个数
countByKey:统计每个Key中的元素的个数
countByValue:统计每个value的个数

// -- count
val arr = Array("Tom","Jack","Tony","Bob","Kate")
val rdd = sc.makeRDD(arr)
println(rdd.count())
/*
5
 */

// -- countByKey
val rdd = sc.parallelize(Array(
        ("销售部","Tom"), ("销售部","Jack"),("销售部","Bob"),("销售部","Terry"),
        ("后勤部","Jack"),("后勤部","Selina"),("后勤部","Hebe"),
        ("人力部","Ella"),("人力部","Harry"),
        ("开发部","Allen")
    ))
val result = rdd.countByKey();
result.foreach(println)
/*
(后勤部,3)
(开发部,1)
(销售部,4)
(人力部,2)

// -- countByValue
val rdd = sc.parallelize(Array(
      "Tom","Jed","Tom",
      "Tom","Jed","Jed",
      "Tom","Tony","Jed"
    ))
val result = rdd.countByValue();
result.foreach(println)
/*
(Tom,4)
(Tony,1)
(Jed,4)
*/

(5) first、take、takeSample

take(n):取RDD中前n条数据
first:= take(1)
takeSample(withReplacement,num,[seed]):随机抽取RDD中的元素

withReplacement : 是否是放回式抽样  
    true代表如果抽中A元素,之后还可以抽取A元素
    false代表如果抽中了A元素,之后都不在抽取A元素  
fraction : 抽样的比例  
seed : 抽样算法的随机数种子,不同的数值代表不同的抽样规则,可以手动设置,默认为long的随机数

val arr = Array(("Tom",88),("Bob",92),("Allen",86),("Kate",100),("Sandy",97))
val rdd = sc.makeRDD(arr)

// 排序后去前三个
rdd.sortBy(_._2,false).take(3).foreach(println)
/*
(Kate,100)
(Sandy,97)
(Bob,92)
 */

// 排序后取top1
rdd.sortBy(_._2,false).take(1).foreach(println) // (Kate,100)
println(rdd.sortBy(_._2,false).first()) // (Kate,100)

// 随机抽取2个元素
rdd.takeSample(false, 2).foreach(println)

(6) top、takeOrdered

top(n):从RDD中,按照默认(降序)或者指定的排序规则,返回前n个元素
takeOrdered(n):从RDD中,按照默认(升序)或者指定的排序规则,返回前n个元素

var rdd = sc.makeRDD(Array(10, 4, 2, 12, 3))

rdd.top(3).foreach(println) // 12 10 4(降序取)

rdd.takeOrdered(3).foreach(println) // 2 3 4(升序取)

(7) saveAsTextFile、saveAsSequenceFile 、saveAsObjectFile

  • saveAsTextFile:把结果文件保存为textFile
  • saveAsSequenceFile:把结果文件保存为SequenceFile
  • saveAsObjectFile:把结果文件保存为ObjectFile
    val line = sc.textFile("hdfs://repo:9000/user/spark/wordcount/input/wordcount.txt")
    line.flatMap(_.split(" "))
      .map((_,1))
      .reduceByKey(_+_)
      .sortBy(_._2,false)
      // .foreach(t => println(t._1 + " " + t._2))
      .saveAsTextFile("hdfs://repo:9000/user/spark/wordcount/output/")
    ```
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容

  • 我啊 总是好了伤疤忘了疼 张欢对我说 你当初对我那么坏 我想的是也许你变了呢 现在也没人可以说关于你的事情了 大家...
    Maria110阅读 191评论 0 0
  • 希特勒……说过,‘一个国家并不靠货币的表面价值来维持生活,而是要靠真正的生产,而生产才能使货币获得价值。生产才是货...
    昭安阅读 118评论 0 0
  • 课程内容:竞品分析 授课老师:翟锦修 时间:2017-11-05 一、竞品分析的概念介绍 (一)什么是竞品分析 是...
    喵呜汪汪汪阅读 764评论 1 2
  • 自从那天遇见你,我就改变了我的方向,我喜欢简单纯净的东西,也喜欢小清新,更喜欢感悟人生,诚信做人,我记得我是在去...
    琪小猪阅读 336评论 0 1
  • 最近忽然发现时间不够用了,开玩笑说是因为做了客服,真的有点忙。 除了是因为记得自己的半年目标,每天都要往前走一点点...
    来是春初阅读 299评论 1 3