应用R语言进行缺失数据探索及可视化

R语言中缺失数据处理

应用高级方法进行缺失数据的管理

  • 缺失数据主要包括
    • missing completely at random (MCAR)完全随机缺失
    • missing at random (MAR) 随机缺失
    • Not missing at random (NMAR).非随机缺失 ### mice and VIM package
  • Generates Multivariate Imputations by Chained Equations (MICE)
  • VIM包主要用于缺失数据的可视化

数据实操

  • 我们以mtcars数据集为例
dim(mtcars)
## [1] 32 11
data=mtcars

MICE包

  • md.pattern:Display missing-data patterns.函数用于探索数据缺失的模式
library(mice)
## Warning: package 'mice' was built under R version 3.6.3
## 
## Attaching package: 'mice'
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
md.pattern(data) 
##  /\     /\
## {  `---'  }
## {  O   O  }
## ==>  V <==  No need for mice. This data set is completely observed.
##  \  \|/  /
##   `-----'
image.png
##    mpg cyl disp hp drat wt qsec vs am gear carb  
## 32   1   1    1  1    1  1    1  1  1    1    1 0
##      0   0    0  0    0  0    0  0  0    0    0 0
# 那么显然我们发现了mtcars是一个没有缺失的数据集

那我们看一个有缺失的数吧

  • 这样才能体现md.pattern函数的强大功能
  • 正所谓一图胜前言
dim(nhanes)
## [1] 25  4
# 这是一个25*4的矩阵数据
nhanes # 因为数据不大,索性看看它的全貌吧
##    age  bmi hyp chl
## 1    1   NA  NA  NA
## 2    2 22.7   1 187
## 3    1   NA   1 187
## 4    3   NA  NA  NA
## 5    1 20.4   1 113
## 6    3   NA  NA 184
## 7    1 22.5   1 118
## 8    1 30.1   1 187
## 9    2 22.0   1 238
## 10   2   NA  NA  NA
## 11   1   NA  NA  NA
## 12   2   NA  NA  NA
## 13   3 21.7   1 206
## 14   2 28.7   2 204
## 15   1 29.6   1  NA
## 16   1   NA  NA  NA
## 17   3 27.2   2 284
## 18   2 26.3   2 199
## 19   1 35.3   1 218
## 20   3 25.5   2  NA
## 21   1   NA  NA  NA
## 22   1 33.2   1 229
## 23   1 27.5   1 131
## 24   3 24.9   1  NA
## 25   2 27.4   1 186
md.pattern(nhanes)
image.png
##    age hyp bmi chl   
## 13   1   1   1   1  0
## 3    1   1   1   0  1
## 1    1   1   0   1  1
## 1    1   0   0   1  2
## 7    1   0   0   0  3
##      0   8   9  10 27

那么这张图的解读是什么呢?

还有 78% 的精彩内容
©著作权归作者所有,转载或内容合作请联系作者
支付 ¥6.99 继续阅读
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,699评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,124评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,127评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,342评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,356评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,057评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,654评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,572评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,095评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,205评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,343评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,015评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,704评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,196评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,320评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,690评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,348评论 2 358

推荐阅读更多精彩内容