数据库查询及优化艺术

一、了解关系代数

关系代数是一种过程化查询语言。它包括一个运算的集合,这些运算以一个或两个关系为输入,产生一个新的关系作为结果。
关系代数是关系型数据库操作的理论基础,关系代数支持并、差、笛卡尔积、投影和选择等基本运算,任何一个查询都可以表示成由关系运算符组成的树,一般sql查询引擎会在解析优化中会先将 SQL 转换成关系表达式(relational expression),然后通过规则匹配(rules match)进行相应的优化,优化会有一个成本(cost)模型为参考。

名称 英文 符号 说明
选择 select σ 类似于 SQL 中的 where
投影 project Π 类似于 SQL 中的 select
union 类似于 SQL 中的 union
集合差 set-difference - SQL中没有对应的操作符
笛卡儿积 Cartesian-product × 类似于 SQL 中不带 on 条件的 inner join
重命名 rename ρ 类似于 SQL 中的 as
集合交 intersection SQL中没有对应的操作符
自然连接 natural join 类似于 SQL 中的 inner join
赋值 assignment

二、查询优化

2-1 查询处理过程

查询处理过程.png

1.解析 SQL, 语法分析、词法分析,把 SQL 转换成为 AST (抽象语法树),解析工具包括JavaCC、ANRLR;
2.查询检查,根据数据库的元数据信息进行语法验证;包括语义检查、视图转换、安全检查、完整性检查等;
3.逻辑计划优化,优化器的核心,根据前面生成的逻辑计划按照相应的规则(Rule)进行优化;
4.物理执行,生成物理计划,物理执行计划执行。

2-2 查询优化模型

2-2-1有一个例子

查询sql
select u.id as user_id, u.name as user_name, j.company as user_company, u.age as user_age from users u join jobs j on u.name=j.name where u.age > 30 and j.id>10 order by user_id

解析和优化(谓词下推)

谓词下推.png

这个sql 中有一个明显可以优化的地方就是过滤条件的下压(push down),在进行 join 操作前,先进行 filter 操作,这样的话就不需要在 join 时进行全量 join,减少参与 join 的数据量。

2-2-2 代数优化

2-2-2-1 代数等价变换

总结起来就是: "(连接类的)交换律, 结合律; (投影和选择类的)串接律, (这两大类相互之间)分配率"
1.E1 X E2 = E2 X E1, (E1 X E2) X E3 = E1 X (E2 X E3)做笛卡尔积, 多个表做连接是满足交换律和结合律的
2.投影和选择的串接定律
多层的投影可以取小的那个
多层的选择可以取交集(其实也是那个范围比较小的), 这样能够把多次选择多次表的扫描, 改成一次.
3.选择与投影交换律: 选择和投影的顺序可以随意改变
4.选择与笛卡尔积, 并, 自然连接, 差的分配律: 处在后面的选择, 可以与处在前面的二目运算顺序进行调整, 使得对相应的表先实施选择, 再实现连接等二目运算. 这个非常重要, 是先选择后进行二目运算的依据, 又名"选择提前".
5.选择与笛卡尔积, 并的分配率: 可以先投影, 也可以先进行二目运算

2-2-2-2 经验性优化五大策略

其实就是"选择, 合并, 视图"
1.选择运算尽可能先做。 这样往往使得执行代价减少了几个数量级, 主要的原理就是选择运算能够大大降低参与连接的元组的行数, 使得连接生成的A•B结果也大大被缩小.
2.把选择和投影运算同时进行, 如果有若干投影和选择运算, 并且他们都是针对同一个表, 那么可以在扫描这个表的时候同时完成这些所有的运算, 以此避免重复扫描这张表.
3.把投影与其前或者后的双目运算(笛卡尔积, 等值连接, 并集, 差集)结合起来, 也就是说, 没有必要为了选择出几个字段而单独再重新扫描全表.
4.把某些选择和在它前面要执行的笛卡尔积结合起来成为一个连接运算(比如变成等值连接), 这是因为连接运算要比同样情形下的笛卡尔积节省很多时间.
5.找出公共子表达式(一次计算, 多次使用). 比如很多的查询都基于某个公共部分, 那么可以定义一个公共子表达式, 然后先计算一次公共子表达式, 然后把它存盘, 供其他大量的表达式来使用. 我们定义视图其实就是在实践这种策略.

2-2-3 物理优化

常用的两个优化模型:RBO(Rule-Based Optimizer) 和 CBO(Cost-Based Optimizer)
1.RBO
启发式优化器(heuristic implementation ),它简单地按 AST 树结构匹配所有已知规则,直到没有规则能够匹配为止;
对于小的表, 直接全表扫描, 即使列上有索引.
对于大的表, 如果是选择条件涉及主键, 那么使用主键索引(MySQL等主流关系数据库都会对主键建立索引);
如果不是涉及主键, 那么如果是等值查询, 列上有索引, 就使用索引; 如果非等值查询, 而是范围值查询, 那么范围<=10%用索引, 范围比较大的, 直接全表扫描.
And 和 OR: AND连接的, 优先考虑使用索引; OR连接的, 优先考虑使用顺序扫描, 毕竟OR可能性非常多.
连接操作: 如果两个表都按照连接属性排序, 用sort-merge算法, 如果其中一个表在连接属性上有索引,采用索引连接算法; 如果啥都没有, 对小的表建立哈希表, 使用hash join方法; 或者使用基本的嵌套循环, 不过外层循环(i循环)使用小表, 这样能稍微减小代价.

2.CBO
火山式优化器(VolcanoPlanner)成本优化器也会匹配并应用规则,当整棵树的成本降低趋于稳定后,优化完成,成本优化器依赖于比较准确的成本估算。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容