R for data science ||探索性数据分析

什么是探索性数据分析

参看之前的文章:
数量生态学笔记||数据探索
环境与生态统计||探索性数据分析
环境与生态统计||探索性数据可视化

探索性数据分析的作用
  • 对数据提出问题
  • 对数据进行可视化、转换、建模,进而找出问题的答案
  • 使用上一步的结果来精炼问题,并提出新问题
对分布进行可视化
head(diamonds)
# A tibble: 6 x 10
  carat cut       color clarity depth table price     x     y     z
  <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23  Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
2 0.21  Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
3 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
4 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
5 0.31  Good      J     SI2      63.3    58   335  4.34  4.35  2.75
6 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48

ggplot(data = diamonds) +
  geom_bar(mapping = aes(x = cut))
> diamonds %>%
+   count(cut)
# A tibble: 5 x 2
  cut           n
  <ord>     <int>
1 Fair       1610
2 Good       4906
3 Very Good 12082
4 Premium   13791
5 Ideal     21551
ggplot(data = diamonds) +
  geom_histogram(mapping = aes(x = carat), binwidth = 0.5)

> diamonds %>% 
+   count(cut_width(carat, 0.5))
# A tibble: 11 x 2
   `cut_width(carat, 0.5)`     n
   <fct>                   <int>
 1 [-0.25,0.25]              785
 2 (0.25,0.75]             29498
 3 (0.75,1.25]             15977
 4 (1.25,1.75]              5313
 5 (1.75,2.25]              2002
 6 (2.25,2.75]               322
 7 (2.75,3.25]                32
 8 (3.25,3.75]                 5
 9 (3.75,4.25]                 4
10 (4.25,4.75]                 1
11 (4.75,5.25]                 1
diamonds %>% 
  filter(carat < 3)  %>% 
   ggplot( mapping = aes(x = carat)) +
  geom_histogram(binwidth = 0.1)

diamonds %>% 
   filter(carat < 3)  %>% 
 ggplot( mapping = aes(x = carat, colour = cut)) +
   geom_freqpoly(binwidth = 0.1)

典型值
diamonds %>% 
   filter(carat < 3)  %>% 
   ggplot( mapping = aes(x = carat)) +
   geom_histogram(binwidth = 0.01)
 
异常值
p1<- ggplot(diamonds) + 
   geom_histogram(mapping = aes(x = y), binwidth = 0.5)
p2<-ggplot(diamonds) + 
  geom_histogram(mapping = aes(x = y), binwidth = 0.5) +
  coord_cartesian(ylim = c(0, 50))
library(gridExtra) 
grid.arrange(p1,p2,ncol = 2, nrow = 1)
unusual <- diamonds %>% 
  filter(y < 3 | y > 20) %>% 
  select(price, x, y, z) %>%
  arrange(y)
unusual


# A tibble: 9 x 4
  price     x     y     z
  <int> <dbl> <dbl> <dbl>
1  5139  0      0    0   
2  6381  0      0    0   
3 12800  0      0    0   
4 15686  0      0    0   
5 18034  0      0    0   
6  2130  0      0    0   
7  2130  0      0    0   
8  2075  5.15  31.8  5.12
9 12210  8.09  58.9  8.06
缺失值
  • 去丢弃异常值
diamonds2 <- diamonds %>% 
  filter(between(y, 3, 20))

建议用缺失值代替异常值

diamonds2 <- diamonds %>% 
  mutate(y = ifelse(y < 3 | y > 20, NA, y))
p1<- ggplot(data = diamonds2, mapping = aes(x = x, y = y)) + 
  geom_point()

Warning message:
Removed 9 rows containing missing values (geom_point).
p2<-ggplot(data = diamonds2, mapping = aes(x = x, y = y)) + 
  geom_point(na.rm = TRUE)
grid.arrange(p1,p2,ncol = 2, nrow = 1)

nycflights13::flights %>% 
  mutate(
    cancelled = is.na(dep_time),
    sched_hour = sched_dep_time %/% 100,
    sched_min = sched_dep_time %% 100,
    sched_dep_time = sched_hour + sched_min / 60
  ) %>% 
  ggplot(mapping = aes(sched_dep_time)) + 
    geom_freqpoly(mapping = aes(colour = cancelled), binwidth = 1/4)
相关变动
p1<-ggplot(data = diamonds, mapping = aes(x = price)) + 
  geom_freqpoly(mapping = aes(colour = cut), binwidth = 500)

p2<-ggplot(diamonds) + 
  geom_bar(mapping = aes(x = cut))

p3<-ggplot(data = diamonds, mapping = aes(x = price, y = ..density..)) + 
  geom_freqpoly(mapping = aes(colour = cut), binwidth = 500)

grid.arrange(p1,p2,p3,ncol = 3, nrow = 1)
p1<-ggplot(data = diamonds, mapping = aes(x = cut, y = price)) +
  geom_boxplot()
p2<-ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
  geom_boxplot()
p3<-ggplot(data = mpg) +
  geom_boxplot(mapping = aes(x = reorder(class, hwy, FUN = median), y = hwy))
p4<-ggplot(data = mpg) +
  geom_boxplot(mapping = aes(x = reorder(class, hwy, FUN = median), y = hwy)) +
  coord_flip()

p5<-ggplot(data = mpg) +
  geom_violin(mapping = aes(x = reorder(class, hwy, FUN = median), y = hwy)) +
  coord_flip()
grid.arrange(p1,p2,p3,p4,p5,ncol = 5, nrow = 1)

两个分类变量
p1<-ggplot(data = diamonds) +
  geom_count(mapping = aes(x = cut, y = color))
p2<- diamonds %>% 
  count(color, cut) %>%  
  ggplot(mapping = aes(x = color, y = cut)) +
  geom_tile(mapping = aes(fill = n))

  
  diamonds %>% 
  count(color, cut)
#> # A tibble: 35 x 3
#>   color cut           n
#>   <ord> <ord>     <int>
#> 1 D     Fair        163
#> 2 D     Good        662
#> 3 D     Very Good  1513
#> 4 D     Premium    1603
#> 5 D     Ideal      2834
#> 6 E     Fair        224
#> # … with 29 more rows
  grid.arrange(p1,p2,ncol = 2, nrow = 1)
两个连续变量
p1<- ggplot(data = diamonds) +
  geom_point(mapping = aes(x = carat, y = price))

p2<-ggplot(data = diamonds) + 
  geom_point(mapping = aes(x = carat, y = price), alpha = 1 / 100)

smaller <- diamonds %>% 
  filter(carat < 3)

p3<-ggplot(data = smaller) +
  geom_bin2d(mapping = aes(x = carat, y = price))

# install.packages("hexbin")
p4<-ggplot(data = smaller) +
  geom_hex(mapping = aes(x = carat, y = price))

p5<-ggplot(data = smaller, mapping = aes(x = carat, y = price)) + 
  geom_boxplot(mapping = aes(group = cut_width(carat, 0.1)))

grid.arrange(p1,p2,p3,p4,p5,ncol = 5, nrow = 1)
模式和模型
  • 模式是不是巧合
  • 如何描述隐含关系
  • 隐含关系有多强
  • 其他变量如何影响这种关系
  • 独立分组会有变化么
library(modelr)

mod <- lm(log(price) ~ log(carat), data = diamonds)

diamonds2 <- diamonds %>% 
  add_residuals(mod) %>% 
  mutate(resid = exp(resid))

p1<-ggplot(data = diamonds2) + 
  geom_point(mapping = aes(x = carat, y = resid))

p2<-ggplot(data = diamonds2) + 
  geom_boxplot(mapping = aes(x = cut, y = resid))

grid.arrange(p1,p2,ncol = 2, nrow = 1)

ggplot2 调用
diamonds %>% 
  count(cut, clarity) %>% 
  ggplot(aes(clarity, cut, fill = n)) + 
  geom_tile()


r4ds

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容