Pandas数据结构基础用法

Head与Tail

head()与tail()用于快速预览Series与DataFrame,默认显示5条数据,也可以指定显示数据的数量。


属性与底层数据

Pandas可以通过多个属性访问元数据:

shape:输出对象的轴维度,与ndarray一致

轴标签:

Series:Index(仅有此轴)

DataFrame:Index(行)与列


Pandas对象(Index、Series、DataFrame)相当于数组的容器,用于存储数据、执行计算。大部分类型的底层数组都是numpy.ndarray。不过,Pandas与第三方支持库一般都会扩展NumPy类型系统,添加自定义数组。

.array属性用于提取Index或Series里的数据。


array一般指ExtensionArray。

提取NumPy数组,用to_numpy()或numpy.asarray()。


Series与Index的类型是ExtensionArray时,to_numpy()会复制数据,并强制转换值。

to_numpy()可以控制numpy.ndarray生成的数据类型。以带时区的datetme为例,NumPy未提供时区信息的datetime数据类型,Pandas则提供了两种表现形式:

1.一种是带Timestamp的numpy.ndarray,提供了正确的tz信息。

2.另一种是datetime64[ns],这也是一种numpy.ndarray,值被转化为UTC,但去掉了时区信息。

时区信息可以用dtype=object保存


或用dtype=’datetime64[ns]’去除。


提取DataFrame里的原数据稍微有点复杂。DataFrame里所有列的数据类型都一样时,DataFrame.to_numpy()返回底层数据:


DataFrame为同构型数据时,Pandas直接修改原始ndarray,所以修改会直接反应在数据结构里。对于异构型数据,即DataFrame列的数据类型不一样时,就不是这种操作模式了,与轴标签不同,不能为值的属性赋值。

这里我们要注意处理异构型数据时,输出结果ndarray的数据类型适用于涉及的各类数据。若DataFrame里包含字符串,输出结构的数据类型就是object。要是只有浮点数或整数,则输出结果的数据类型是浮点数。

以前,Pandas推荐用Series.values或DataFrame.values从Series或DataFrame里提取数据。

但Pandas改进了此功能,现在,推荐用.array或to_numpy提取数据,别再用.values了。

.values有以下2个缺点:

1.Series含扩展类型时,Series.values无法判断到底是改返回NumPy array,还是返回Extension array。而Series.array则只返回ExtensionArray,且不会复制数据。Series.to_numpy则返回NumPy数组,其代价是需要复制、并强制转换数据的值。

2.DataFrame含多种数据类型时,DataFrame.values会复制数据,并将数据的值强制转换同一种数据类型,这是一种代价较高的操作。DataFrame.to_numpy()则返回NumPy数组,这种方式更清晰,也不会把DataFrame里的数据都当作一种类型。

加速操作

借助numexpr与bottleneck支持库,Pandas可以加速特定类型的二进制数值与布尔操作。

处理大型数据集时,这两个支持库特别有用,加速效果也非常明显。numexpr使用智能分块、缓存与多核技术。bottleneck是一组专属cython例程,处理含nans值的数组时,特别快。

请看下面这个例子(DataFrame包含100列×10万行数据):


这两个支持库默认为启用状态,可用以下选项设置:


如果你想学习Python,但是找不到学习路径和资源,欢迎上指尖编程

在线交互式学习,学Pytho更快更好!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容