菜鸟实习日记~day14(BN层)

科研:

BN层

Batch Normalization是由google提出的一种训练优化方法。参考论文:Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift

个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品。

How to use BN?

Normalization是数据标准化(归一化,规范化),Batch 可以理解为批量,加起来就是批量标准化。

先说Batch是怎么确定的。在CNN中,Batch就是训练网络所设定的图片数量batch_size。

Normalization过程,引用论文中的解释:

输入:输入数据x1..xm(这些数据是准备进入激活函数的数据)

计算过程中可以看到,

1.求数据均值;

2.求数据方差;

3.数据进行标准化(个人认为称作正态化也可以)

4.训练参数γ,β

5.输出y通过γ与β的线性变换得到原来的数值

在训练的正向传播中,不会改变当前输出,只记录下γ与β。

在反向传播的时候,根据求得的γ与β通过链式求导方式,求出学习速率以至改变权值

(特征图里的值,作为BN的输入,也就是这9个数值通过BN计算并保存γ与β,通过γ与β使得输出与输入不变)

Why to use BN?

为了防止梯度爆炸或梯度弥散

When to use BN?

OK,说完BN的优势,自然可以知道什么时候用BN比较好。例如,在神经网络训练时遇到收敛速度很慢,或梯度爆炸等无法训练的状况时可以尝试BN来解决。另外,在一般使用情况下也可以加入BN来加快训练速度,提高模型精度

在finetune Resnet时,网络结构文件中BatchNorm层的参数要注意:

1.在训练时所有BN层要设置use_global_stats: false(也可以不写,caffe默认是false)

2.在测试时所有BN层要设置use_global_stats: true

影响:

1.训练如果不设为false,会导致模型不收敛

2.测试如果不设置为true,会导致准确率极低

(亲测,测试时为false时acc=0.05,为true时acc=0.91)

区别:

use_global_stats: false是使用了每个Batch里的数据的均值和方差;

use_global_stats: true是使用了所有数据的均值和方差

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,193评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,306评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,130评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,110评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,118评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,085评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,007评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,844评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,283评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,508评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,395评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,985评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,630评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,797评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,653评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,553评论 2 352

推荐阅读更多精彩内容