为系统加上缓存后,使用缓存需要注意哪些事项?有哪些类型?缓存回收策略、回收算法详解

写在前面

往往开始做一个项目时,不会过多的考虑性能问题,以快速迭代功能为主。后续随着业务的快速发展,系统运行的性能越来越慢,此时,就需要对系统进行相应的优化,而效果最显著的就是给系统加上缓存。那么,问题来了,当你为系统加上缓存时,有没有考虑过使用缓存需要注意哪些事项呢?

开始之前,记得点赞收藏加关注哦 ,需要下载PDF版本和获取更多知识点、面试题的朋友

可以加q群:580763979      备注:简书   免费领取~

缓存命中率

缓存命中率是从缓存中读取数据的次数与总读取次数的比率,命中率越高越好。缓存命中率=从缓存中读取次数 / (总读取次数 (从缓存中读取次数 + 从慢速设备上读取次数))。这是一个非常重要的监控指标,如果做缓存,则应通过监控这个指标来看缓存是否工作良好。

缓存类型

缓存类型总体上来看,可以分为:堆缓存、堆外缓存、磁盘缓存和分布式缓存。

堆内存

使用Java堆内存来存储对象。使用堆缓存的好处是没有序列化/反序列化,是最快的缓存。缺点也很明显,当缓存的数据量很大时,GC(垃圾回收)暂停时间会变长,存储容量受限于堆空间大小。一般通过软引用/弱引用来存储缓存对象。即当堆内存不足时,可以强制回收这部分内存释放堆内存空间。一般使用堆缓存存储较热的数据。可以使用Guava Cache、Ehcache 3.x、 MapDB实现。

堆外内存

即缓存数据存储在堆外内存,可以减少GC暂停时间(堆对象转移到堆外,GC扫描和移动的对象变少了),可以支持更多的缓存空间(只受机器内存大小限制,不受堆空间的影响)。但是,读取数据时需要序列化/反序列化。因此,会比堆缓存慢很多。可以使用Ehcache 3.x、 MapDB实现。

磁盘缓存

即缓存数据存储在磁盘上,在JVM重启时数据还存在,而堆/堆外缓存数据会丢失,需要重新加载。可以使用Ehcache 3.x、MapDB实现。

分布式缓存

分布式缓存可以使用ehcache-clustered(配合Terracotta server)实现Java进程间分布式缓存。也可以使用Memcached、Redis实现。

使用分布式缓存时,有两种模式如下:

单机模式:存储最热的数据到堆缓存,相对热的数据到堆外缓存,不热的数据到磁盘缓存。

集群模式:存储最热的数据到堆缓存,相对热的数据到对外缓存,全量数据到分布式缓存。

缓存回收策略

缓存的回收策略总体上来说包含:基于空间的回收策略、基于容量(空间)的回收策略、基于时间的回收策略和基于对象引用的回收策略。

基于空间

基于空间指缓存设置了存储空间,如设置为10MB,当达到存储空间上限时,按照一定的策略移除数据。

基于容量

基于容量指缓存设置了最大大小,当缓存的条目超过最大大小时,按照一定的策略移除旧数据。

基于时间

TTL(Time To Live):存活期,即缓存数据从创建开始直到到期的一个时间段(不管在这个时间段内有没有被访问,缓存数据都将过期)。

TTI(Time To Idle):空闲期,即缓存数据多久没被访问后移除缓存的时间。

基于对象引用

软引用:如果一个对象是软引用,则当JVM堆内存不足时,垃圾回收器可以回收这些对象。软引用适合用来做缓存,从而当JVM堆内存不足时,可以回收这些对象腾出一些空间供强引用对象使用,从而避免OOM。

弱引用:当垃圾回收器回收内存时,如果发现弱引用,则将它立即回收。相对于软引用,弱引用有更短的生命周期。

注意:只有在没有其他强引用对象引用弱引用/软引用对象时,垃圾回收时才回收该引用。即如果有一个对象(不是弱引用/软引用对象)引用了弱引用/软引用对象,那么垃圾回收时不会回收该弱引用/软引用对象。

回收算法

使用基于空间和基于容量的缓存会使用一定的策略移除旧数据,通常包含:FIFO算法、LRU算法和LFU算法。

FIFO(First In First Out):先进先出算法,即先放入缓存的先被移除。

LRU(Least Recently Used):最近最少使用算法,时间时间距离现在最久的那个被移除。

LFU(Least Frequently Used):最不常用算法,一定时间段内使用次数(频率)最少的那个被移除。

实际应用中基于LRU的缓存居多。

总结

我这里也准备了一线大厂面试资料和超硬核PDF技术文档,以及我为大家精心准备的多套简历模板(不断更新中),希望大家都能找到心仪的工作!

有需要的朋友可以加q群:580763979      备注:简书   免费领取~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容